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Universality and critical phenomena in string defect statistics

Karl Strobl and Mark Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QH, United Kingdom
(Received 19 August 1996

The idea of biased symmetries to avoid or alleviate cosmological problems caused by the appearance of
some topological defects is familiar in the context of domain walls, where the defect statistics lend themselves
naturally to a percolation theory description, and for cosmic strings, where the proportion of infinite strings can
be varied or disappear entirely depending on the bias in the symmetry. In this paper we measure the initial
configurational statistics of a network of string defects after a symmetry-breaking phase transition with initial
bias in the symmetry of the ground state. Using an improved algorithm, which is useful for a more general
class of self-interacting walks on an infinite lattice, we extend the \iarkl. Hindmarsh and K. Strobl, Nucl.

Phys. B437, 471(1995] to better statistics and a different ground-state manifold, nané®, and explore
various different discretizations. Within the statistical errors, the critical exponents of the Hagedorn transition
are found to be quite possibly universal and identical to the critical exponents of three-dimensional bond or site
percolation. This improves our understanding of the percolation theory description of defect statistics after a
biased phase transition. We also find strong evidence that the existence of infinite strings in the Vachaspati-
Vilenkin algorithm[T. Vachaspati and A. Vilenkin, Phys. Rev. 30, 2036(1984] is generic to all(string-

bearing vacuum manifolds, all discretizations thereof, and all regular three-dimensional lattices.
[S1063-651%97)02401-X

PACS numbgs): 02.70—-c, 11.27+d, 61.30.Jf, 61.72.Lk

INTRODUCTION sitions. Defects are also a convenient and compelling way to

seed large-scale structure formation in the early Universe. A

Many symmetries in nature are not exact, including inter.QfUCia| ingrt_adi_ent for the us_ual strin_g-see_ded structure forma-

nal symmetries in field theories. A simple example of antion scenario is that the string configurations develop a scal-
approximate symmetry is a spin system in an external fieldnd Solution[3,4], which in turn seems to depend on the

e.g., a nematic liquid crystal with diamagnetic molecii&s initial scale invariance of the network. The presence or ab-

In particle phvsics. an example of an approximate symmetrstHCe of infinite stringgor, in a closed universe, of strings
P physics, P PP Y ¥hat wrap around jtalso seems to affect the string density in

is the Peccei-Quinn symmetry U(dy, associated with the e gcaling solutiofi5]. Moreover, the question whether any
axionic degree of freedom, which has the degeneracy of itgaspectable fraction of the string mass ought to be in infinite
ground-state manifold lifted at the QCD scale. strings is still controversial and far from being decidable by
Condensed-matter systems, as well as the vacuum in thenalytical means: The usual Vachaspati-Vilenkin algorithm
early Universe, are, in the process of being cooled, subject tgields lattice-dependent results for this fraction, which can
phase transitions. If these transitions are accompanied Bye attributed to the assumption of an unphysical lattice-
symmetry breaking, they may lead to the formation of de-dependent lower cutoff in the loop length distributi@7].
fects: domain walls, strings or vortices, monopoles, or dt has been claimed that a complete absence of infinite
combination of these, depending on the topology of the set oflrings can be achieved by similar algorithms on generalized

equilibrium states after the phase transition. In cosmolog@r@Phs, corresponding to an irregular discretization of al-
such defects are associated with internal symmetries of @Wed string positions, obtained through modeling the colli-

field theory, while in condensed-matter systems there are dglons of true vacuum-phase bubbles after a first-order phase

fects associated with the rotational symmetry of the groun ransition[8]. However, the reason for the very small frac-

. s . ion of infinite strings in[8] has not yet been identified, and
state. Such defects in a nematic liquid crystal are called di Jarious proposals are on the mark@tLd].

clinations[1]. Along a closed path around line disclinations, What is desired for strings is a cosmological disaster for
the orientation of the molecules rotates by an anglevhile  gomain walls: Infinite walls would come to dominate the
in a point defect the molecules are in a radial point defect 0gypansion very quickly, which is incompatible with stronger
“hedgehog” configuration(or a continuous deformation pounds from the cosmic microwave backgrogiid]. A con-
thereoj, directed away from a central point. On the centralyenient way to escape this problem has been to make the
points of the disclinations the molecules cannot have angymmetry between the disjoirfsets of vacuum states an
alignment directions. approximate ond12,13. In particle physics such adjust-
Topological defects form through what in cosmology is ments are possible and in fact necessary, for instance, within
called the Kibble mechanisfi2]: The simple requirement of attempts to explain the family hierarch¥4]. Similar biases
causality prevents regions of the Universe that are separatedl other symmetries can affect the configurational statistics
by more than twice the horizon distangga(t’)dt’ from  for all kinds of topological defects. Attempts to circumvent
being correlated. The actual correlation length can of coursthe monopole problem by allowing monopoles to annihilate
be much smaller. It is this lack of correlation that allows thewith antimonopoles at a sufficient ratcilitated through an
initial conditions to trap topological defects after phase tran-acclaimed tendency for the two to accompany each pther
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have been madgl5]; however, effects that soft symmetry Rp? strings(e.g., line disclinations in nematic liquid crys-
breaking might have to facilitate the monopole antimonopoleg|g), in lattice-based simulations of the Kibble mechanism.
correlations to a higher degree have not been considered. ¥he numerical method is presented in HaB] and contains

this paper we will not address monopoles, but attempt tl_ﬂt,gerhaps essential improvements to the usual Vachaspati-

establish such a description in the case of cosmic strings angd. : . : .
topological line defects in solids, i.e., for softly spoiled sym- |Ienk.|n (W) aIgonthm[l?]. The most '”."po”f"‘”t Improve-
metries with a nontrivial first homotopy group. The technica ment in our calculations is that our lattice size is formally

details of the lattice algorithm and the proof that it conserveéhf'n'tea i.e., we can avoid speC|fy|n_g any_bounc_;lary condi-
(in most casesthe essential invariants of the continuum tions, and can trace much longer strings with a given amount
theory are presented in a separate p@pé. of computer memory than was possible before. The VV al-
In [6] it was pointed out that the existence of infinite gorithm in general discretizes space such that the lattice
strings may be understood as a percolation phenomenon asfacing corresponds to the smallest physical length beyond
the associated critical behavior can be observed at a transihich field values can be considered to be uncorrelated, i.e.,
tion into a phase where the string network exhibits onlythe |attice spacing is of the order of, but perhaps slightly

loops. In this paper we show that this is indeed apercola’tio%lrger than, the correlation length of the field at the

transition and can only be obtained, once the vacuum man§ymmetry—breaking phase transition, but certainly no larger

fold and the discretization thereof and of space-time are cho; 4 : ; . ;
sen, by biasing the symmetry of the ground state. AIthougﬁhan the c.osmologllcal horizon. D_et.alls of the f|_eId dynamics

still no proof is available, we find strong evidence that the?® then inessential to the statistical properties of a large
existence of infinite strings in the Vachaspati-Vilenkin algo-€nsemble of such lattices and vacuum field values are as-

rithm at perfect vacuum symmetries is generic to all vacuun$igned randomly and independently at each space point to
manifolds, all discretizations thereof, and all regular threecreate a Monte Carlo ensemble of field configurations on the

dimensional lattices. lattice. It should be pointed out that the regular lattice we use

We also find that the critical exponents for configurationalhas been criticized, as it does not allow variations in the size
parameters near the percolation threshold are universal faf correlated domains. In particular, some of the results of
different vacuum manifolds and identicdb within our sta-  Borrill's simulations[8] are rather different from ours, for
tistical errorg to the corresponding critical exponents in reasons that are still poorly understood. However, they may
standard bond or site percolation theory. For the case of awell suffer from important finite-size effects.

RP* symmetry and a minimally discretized(l) symmetry, Line defects are then considered to have formed if a
plausibility arguments for this correspondence are broughglosed walk along lattice links maps, through the field map,
forward. onto a noncontractible loop on the vacuum manifold. The

Section | introduces the well-known scaling concept andassumption of a “geodesic rule[18,19 for the interpola-
methods to make it break down through a bias in the vacuurop, of the field between the lattice points is not only intu-
S}/mhmetry.l.There, and in i‘?’cﬁ II, we pokmt olutdsomﬁ aspectgiyvely acceptable, but in this formalism it is also essential in
geéne rﬁgﬁﬁgge%o?nc?ﬁé’ g(i;?in,gt(ﬁt:ruz;turrelzogvnethgee’s uta)‘j\éitn?r%rder to guarantee string flux conservation, an essential sym-
particular, a clear distinction between the different manifes- etry of the problen16,7). Referenceq16,7] also prove

tations of scaling in the loop and the infinite-string ensemble:[hat only the dual lattice to the tetrakaidekahedral lattice can

is made and a correlation to scaling in percolation theory jQrESErVe a uniqueness in the identification of the paths of
single strings and rotational symmetry of the Monte Carlo

illustrated. In Sec. Il we show ways to control and estimate . : . R
statistical errors and present results of measurements for pénSemble at the same time. This lattice has been used in this
fect vacuum symmetries. Section IIl explains the theoreticafOntext in Refs[6,7,2q and to study simulations of mono-
basis on which one expects the percolation transition to od?0les and texturefl5,21].

cur. Section IV presents results for this Hagedorn-like tran-

sition at which the infinite strings start to appdas one B. Long-range correlations in topological defects
decrea:ses the_bitasé in the sﬁwﬁw\g{e extract cr]!titcr:]al ex- Strings are usually modeled by random walks, either
ponents associated, e.g., wi e divergence of the averal . I ' ; ,
loop length, a suitably defined susceptibility, and a correla%erowrr:Ian or self-ay0|d|ng. As usual in the;fhterqtgre, we wil
tion length(for correlations in the string configurations, not use the abbreviation SAW to mean self-avoidirandom

the vacuum field Compared to Ref6], the accuracy of the walk (th_er_e are obviously infinitely many ways of building
results is greatly improved, results for tR@®? symmetry are selfja\./mdlng vyalks, each leading to possibly quite ldl_fferent
different, and statistical errors are estimated. Section V disStatistics; straight walks, for example, are self-avoiding but
cusses issues of the universality of the critical exponents an@viously exhibit quite different statistics to SAWs in di-
a percolation theory understanding of the Hagedorn transiensions higher than opeA self-avoiding random walk
tion is developed. A renormalization-groRG) understand- Mmodels an excluded-volume effect and is known to apply
ing of the scaling concept is developed and problems witwell to polymers[1]. However, it is not clear that either kind
the RG method in calculating the critical exponents are adof walk represents the configurational statistics of cosmic

dressed, as are cosmological implications. strings or superfluid vortices, for there are long-range inter-
actions that could change the Hausdorff dimension. That
I. FUNDAMENTALS OF STRING STATISTICS there are superhorizon correlations in the configurations of

topological defects is not exactly neM5]. In the case of

cosmic strings it can be demonstrated by arriving at a simple
We will evaluate numerically the statistics of cosmi¢l))  contradiction when assuming no long-range correlations.

strings (or, equivalently, vortices of superfluitHe) and of Take a closed circular walk through three-space spanning

A. Numerical methods
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many correlation volumes. How many strings does one ex- N n

pect to encircle with such a walk? Since there is a well- (R)= lim (NlE |R”|) =(({|R"| ),
defined string density per correlation area, the number of N—eo =1

encircled strings should increase proportionally with the area

A enclosed by the walk. If they are uncorrelated, the net flux,rogyce the same results for the fractal dimension, such that
thro.ugh th|s area will be partially canceled by strings of op-j, particularl =<(|R|P)«<(|R|)P [23]. It is well known that the
posite orientation and one expects an average net flux Qfimension for a Brownian walk i©=2. and for a self-
around/A going through the loop formed by our walk. On ayoiding random walk in three dimensions it is
the other hand, the net flux is given also by seeing how oftefy — 1/, — 1/(0.5877-0.0006) (see Ref[24] and references
the field winds around (1) while one follows the walk. This  therein for a summary of different methods used to obtain
number, however, is expected to increase as the square ragfat result. However, the original string formation simula-
of the length of the walk, since the field values are uncorreyigng [17,25 are consistent witlD=2. The reason for this
lated on some length scale that is small compared to the sizgas seen in the fact that they simulated a dense string net-
of the loop and many of the windings will cancel out. Oneyrk: A single string, as we trace out its path, experiences a
therefore has to conclude that, if the Kibble mechanism igepyision from all of the segments of other strings, which do
responsible for the formation of stringse., if thefield val- ot have any statistical bias towards the origin. Therefore the
uesare uncorrelated beyond some scale initialte string  yepyision from the forbidden volume will also have no direc-
network will have long-range correlation, favoring, for in- tional bias. Thus the fractal dimension of the string could
stance, flux cancellation for oriented strings on large suryigo pe argued to belose t9 2, although the string is self-
faces. One should therefore expect deviations from Brownayoiding. In polymer physics, this effect has been known for
ian behavior in the string statistics. This is also favored.gome time to occur in a dense solution of polymidrs In a
because a cosmic string cleaily self-avoiding: Because a giatistical sense, the network of cosmic strings was argued to
string is defined by the topology of the f_|eId map, it will g equivalent to a dense network of polymE2s]. A poly-
always follow the same way again, once it has turned backer in a dilute solution will exhibit the configurational sta-
onto itself. A cosmic string is therefor_e _alwayS_ forming aistics of a self-avoiding random walk, while in a dense so-
loop or has to be infinite and self-avoiding. This does nofytion of polymers, each one has the structure of a Brownian
mean, however, that the string’s configurational statistics argsndom walk. Thus taking this lesson from polymer physics
those of a s_eIf—avo@mga_ndomwaIk, beca_use the nature of yne would expect the scaling of the string sRevith length

the self-avoidance is dictated by the field map. A SAW| i, the initial configuration of cosmic strings to correspond
shows correlations only on very short scalgpically scales 1 5 SAW on scales smaller than the mean separation be-
of the lattice constajt One of the reasons why strings also yeen different strings and to a Brownian walk on scales
cannot be randomly self-avoiding is that the field map carriega ger than this. In the cosmic string case, however, the mean
the memory of the position of all the other strings, whichgenaration is of the order of the correlation length itself,
cannot be crossed. We will show that neither a Brownianyich is the same as the lattice spacing. So we expect the
walk nor a random self-avoiding random walk models cOSja5 towards a SAW to fall off with distance roughly as fast
mic strings accurately and that the walk statistics depend 0B the [attice discretization errors, which makes this short-

the vacuum manifold creating the strings. distance effect immeasurable. We shall anticipate the results
_ _ of the following sections: the fractal dimension of a string at
C. Scaling hypothesis formation, in general, is not the same as for a Brownian

A U(1) string in the Vachaspati-Vilenkin algorithm on a Walk. It is only for U1) strings that measurements are con-
tetrahedral lattice is self-avoidir[@], irrespective of the dis- Sistent with the exact value of 2, in the extremely long-
cretization(if any) of U(1) used in the algorithm. One might distance limit (=10°-10 lattice unit3. Of the other strings
therefore expect the network of cosmic strings to have théhat have been measured, none have fractal dimensions
statistical properties of a self-avoiding random walk. A SAw higher than the (1) strings, but all have distinctly larger
builds up an excluded volume as it follows its path, which is,D than the SAW.
in a statistical sense, spherically symmetric and clustered AS is customary, we can introduce the scaling hypothesis
around the origif22]. The SAW therefore has a stronger in order to estimate a few other properties of the string net-
tendency to move away from the origin than the BrownianWork. It states that, in terms of its statistical properties, the
walk, which is allowed to intersect itself arbitrarily often. String network looks the same on all scales much larger than
This property is expressed in the fractal dimensibof the the correlation I_ength of the vacuum field. _Scale invariance is
walk, which is the exponent relating the average string?henomenologically the same as the existence of a large-

lengthl between two points on the same string to their rela-Scale (IR) renormalization-group fixed point. However,
tive distancer by renormalization-group arguments for topological objects are

hard to find. To our knowledge, there exists no analytic work
l<(R)P, (1)  that would lend firm support to the scaling hypothesis. In
fact, most analytic work gets intractable if the scaling hy-
pothesis is not put im priori. One would expect a proof of
where the angular brackets denote some averaging procedufte scaling hypothesis to contain RG arguments. We will
over a large ensemble of walks. We show in another papedevelop percolation theoretical RG arguments in favor of
that several different averaging procedures, in particular théhis hypothesis in Appendix B. With the scaling hypothesis,
ones of the kind the expected distribution of closed loops can be derj2&dl



55 UNIVERSALITY AND CRITICAL PHENOMENA IN . .. 1123

From dimensional arguments, the number of closed loops 200000 , : ;
with size fromR to R+ dR per unit volume can be written as

(2) 150000 -

If the system is scale invariant, the distribution should be R?
independent of the correlation lengéhand one expects

100000

dnxR™*dR. ®) 50000

The length distribution of loops for strings with a fractal
dimension ofD is therefore

0 10000 20000 30000 40000 50000

dnel ~Pdl, (4
with FIG. 1. Relation between the average distance of a string ele-
ment from the origin and the string length walked until arriving at
b=1+3/D 5 this element. The upper line represents averages over the “infinite”

) ) ) ) strings only(i.e., strings that survive up to the length=50 000
or, more generally, +d/D, with d being the dimension of \here this particular measurement was stopp@te lower line

the space that the walk is embedded in. It was originallyrepresents averages over the string loops and has high statistical
expected 17] that it follows from scale invariance that there errors on the long-loop end, because of the low number of loops,
should be no infinite strings. This turned out not to be theand even higher systematic errors, because the ratio of loops
case, since, as we will discuss in Sec. IIB, ensembles ofirongly counted as infinite to the correctly counted loops increases.
infinite strings and ensembles of loops manifest scale invariThe averages were taken over 10 000 strings, 6334 of which hap-
ance in entirely different ways, namely, in the validity of the pened to be infinite. Only 54 loops survived up to length 10 000 and
Egs. (1) and (5), respectively. Infinite strings can still look only 10 to length 30 000. One sees that the relationRfows | for
statistically the same on all scales much larger than the lathe infinite string part is almost perfectly linear, suggesting Brown-
tice Spacing: A Brownian walk is scale invariant and has dan statistics. The vacuum manlfold(l) was discretized by three
nonzero probability not to return to the origin @>2 di-  €quidistant angles.

mensions. The origin of the scale invariance of the string

network seems to be connected with the absence of londoops, as discussed [%] and item(iii) in Sec. Il A. What-
range correlations in the order paramefé7]. However,  ever numbers one gets for these quantities are probably un-
scale invariance does not necessarily imply that the networkhysical since there is no known algorithteast of all VV-

is Brownlan as originally stated..StrlctIy spgakmg, scale iN-type algorithms that would tell us what the physical UV
variance holds when all the scaling properties of a networke ,ioff on the loop size distribution E¢4) should ook like.
such as Eqq1) and(4), are power laws: Only power laws do Scale invariance can hold only in the linit £.

not change upon linear rescaling of the variables. In this If D=2, one would expect a linear relationship between

sense, scaling is satisfied whenever Eds.and (4) hold. 5 . ;
However, to make scaling also work in spite of finite—sizewalk length and averagR”, which would then, if the prob-

effects prohibiting us from identifying the very long loops, ability distribution for ending up at a point after| steps is

Eq. (5) is taken as the manifestation of scale invariance. Thi§3aussian, be interpretable as the averagef the distribu-

is plausible: Equation(5) implies that loops exhibiton  tion. All this is familiar from the Brownian walk, and mea-
scales much larger than the lattice spacing but much small@urements seem to indicate that, in the case of B Bym-
than the loop sizethe same fractal dimension as infinite metry, we are close to such statistics. Figure 1 presents the
strings, so that on scales where one counts some number liiear-linear graph oR? vs the walk lengtH, which can be
loops wrongly as infinite strings, the distinction between theseen to be an almost perfectly linear relation. The measure-
two becomes unnecessary. In this sense, (Bgis a more ments in Figs. 1 and 2 are made using a discretization of
stringent definition of scale invariance because it allows onéJ(1) by three equidistant anglddn a sloppy way, we could

to be ignorant about effects on scales that a particular obsesay we discretize (1) by Z;. This only is correct as far as
vation may not reach. If we defined scale invariance by somé¢he allowed vacuum angles are concerned, but may be mis-
omniscient observer that can distinguish loops even if theyeading since in an actudl; symmetry the lines that we
exceed the observed scale in size, then there is no reason fdentify as geodesics on () would be associated with a
the exponents of the loop distribution to be in any relation tdfinite vacuum energy, i.e. they would be crossing domain
the exponents of the distribution in infinite strings. One, ofwalls. It is more correct to say that we triangulate the
course, does not nedd=2 in order to have a scale-free vacuum manifold as well as space: in this case with three
distribution of loop sizeR. It is important to note that, be- vertices and three edges, joining adjacent points. This auto-
cause of Egs(1) and(2), although they are the criteria for matically encodes the geodesic rule. This distinction seems
scale invariance, there are some observables that are nwivial, but it allows an easier generalization to, e.g., discreti-
scale invariant if they happen to be dependent on the U\zations ofRPVN).] Such measurements were mad¢6hand
cutoff. An example of this is the fraction of string mass in we complete results from there. In particular, we present a
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6.0 . ; : ‘ volume effect(from the self-avoiding nature of the string
still turned on, with a directional bias away from the origin.
50l i Eventually, repulsion from all other pieces of string should
even out with repulsion from pieces of the same string, with
no directional bias at all, but this happens only at some dis-
oAor i tance from the origin. We will allow for this source of error
& ) )
= by cutting off the low-length regime at lengths between 10
ol 1 and 1000 lattice units whenever we measure configurational
exponents from the Monte Carlo ensembles. A cutoff of 20 is
20 L | usually sufficient for extracting the exponewtsndb in Eq.
(8), while 500 is very good, and still perfectly practical, for
extracting the fractal dimensidd on the infinite string part.
1%.0 To 2.0 3.0 4.0 5.0 Which cutoff to choose is decided on a case by case basis by
log,,(1) observing where a cutoff independent measurement can be
obtained.
FIG. 2. log-log plot of the “infinite string” contribution in Fig. (iii) Frequently, we will not quote the fraction of the total

1. We see that the short-length limit has lattice discretization errorstring mass found in loops. Such numbers are meaningless
and that a true power law is approached onlylfer30. The mea-  unless there is a lower cutoff for loop lengths much larger
surements are listed in Table II. that one in units of correlation lengtis which case one
gets very little mass in loops anywayThis parameter is
much better error analysis here. Results are represented splittice dependenf26], even for simple Brownian random
between the infinite-string part and the loop contribution.walks or self-avoiding random walks. This is partly due to
This is a procedure we will follow throughout this paper, in different coordination numbers of different latticé5or ex-
analogy to conventions in percolation theory, and we willample, every vertex on the tetrakaidekahedral lattice is con-

show that it is in fact necessary to do so. nected to four lattice links, while this number is six in the
simple cubic case. There are more possibilities for the string
II. RESULTS FOR PERFECT SYMMETRIES to “stray” in the Simple cubic CaSg?.ThiS is connected with
another lattice dependence of this number: The length of the
A. Elimination and estimation of errors lattice links in the tetrakaidekahedral caseaig2/4, with a

Before we turn to the results, a few words of caution arethe edge length of the underlying bcc lattice, while the cor-
in order. Among those, we include an explanation of how we'elation length is between3/2 anda (since every link

arrive at error estimates for the statistical error. borders three tetrakaidekahedra, we need to take all the dis-
(i) Because of the nature of the Monte Carlo averagingtances between those three as representatives of a correlation
there are two big sources of error for very long lodps.,  length; two pairs have the distanag/3/2, while one pair is

the longest ones permitted in the simulationid/e follow  separated bg). Henceforth, when we refer to “walk lengths
every string until it hits a certain upper limit of the string in lattice units” we mean in units ofy2/4, which is the
lengthl<A or until it returns to the origin, whatever hap- edge length of the tetrakaidekahedral lattice. Since the small-
pens first. If it does not return to the origin until we have est allowed loops in both lattices consist of four links, the
reached the length\, it is counted towards the “infinite- tetrakaidekahedral lattice allows much smaller loGpsunits
string” ensemble. This does not introduce too many prob-of correlation lengthsthan the simple cubic lattice. Accord-
lems for the averaging over infinite stringss long as there ing to Eq. (3), we expect a large contribution to the total
are many because of the nature of E(B), which ensures string mass to be in very small loops, so that on a tetrakaid-
that only very few of the strings surviving up to lengthare  ekahedral lattice the total string mass in loops will be con-
actually wrongly counted as infinite. For the loop distribu- siderably higher than on the cubic lattice. The problem of the
tion, which has only very few strings in this regime, the lattice dependence of the mass fraction in loops also reflects
statistical errors are hug@ the end, usually just before we a lack of knowledge about the physics involved in the pro-
reachl=A, we even “average” over one string onjybut  duction of small loops. Physically, one would expect a
the systematic errors in this regime are equally bad becausanooth cutoff for short loops, so that the very small loop
there is a finite number of strings thstiouldbe in the loop  contribution in Eq.(3) gets gradually suppressed. We do not
distribution but are not identified as loops. This drives theknow the form of this cutoff and we expect it to depend not
measuredR? to zero at the length where the longest of theonly on dynamical details of the Kibble mechanism but also
correctly identified loops closegompare the lower line in  on thermal production mechanisms for string lodpéich
Fig. 1). Extraction of configurational exponents on the loopshould be relevant right at the phase transition temperature,
distribution will therefore be defined through fitting appro- but quickly become subdominant as the Universe cools fur-
priate curves that approach the actual measurements asyntpen. In any case, the physical relevance of knowing the
totically in the intermediate-length regime only. exact contribution to the total string mass in small loops
(i) A word of caution is also necessary for the short-produced at a phase transition is highly questionable, as they
length limits. As seen, for example, in Fig. 2, scaling is notdisappear quickly in any case. This does not affect the physi-
satisfied in the short-walk-length regime. This is due to twocal relevance of the other data we can extract from
sources of error. First, there are obviously lattice discretizaVachaspati-Vilenkin-type measurements because the long
tion artifacts. Second, at small distances the excludedioops and infinite strings are not transient.
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TABLE |I. Statistical variances in measurements of the fractal . T . .
dimension for ensembles of fewer and fewer strings. The statistical
error for a large ensemble is the extrapolation of these values to the
appropriate number of strings.

Number Number Average Standard 5
of strings of ensembles D deviation ;é
1000 10 2.027 0.038 =
500 10 2.022 0.045
250 10 2.035 0.051
100 10 2.021 0.094
1550 18 6 4 a2

log, (N/N,,

easured)

(iv) Finally, we need to explain how we arrived at the
values for the statistical error. To estimate, for instance, the
statistical error percentage of the fractal dimendipnmea-
sured for a total number oW easureaStrings up to a length
A, we take, for example, ten sets 8= N casurehlO strings
and measure the variance of the result, then take ten sets of
N=Nneasurel?20 and ten sets o= N easureldO strings, and
so on. We then measure the variance of the results for all The linear fit to Fig. 4, the log-log plot ofR?) vs I,
those sets and, under the assumption that the error behav@4eraged over loops only, obviously requires some sensible
like a power of the size of the string ensemble, we extrapoupper cutoff much lower thark, and to some extent any
late to an ensemble OF/easureasStrings. If all our measur- Mmeasurement of the fractal dimension of the loop ensemble
ables were Gaussian random variables for any sample withity cutoff dependent. Nevertheless, a fractal dimension of
the ensemble, this power law would just &g’ A, which D=2 is inconsistent with any part of Fig. 4, as is any fractal
motivates this approach. Since configurational exponents afmension measured for the infinite-string contribution as
normally not distributed in a Gaussian distribution within listed in Table II. A typical subset of this loop ensemble,
samples of the ensemble, we decided to allow a generalizégduced to loops withe[10,100Q, givesD =2.14, whereas
power law for the variance. We present this method by thé typical infinite-string dimension for, say, strings with
example of a (1) manifold discretized byN=3 equidistant A =50 000 isD=2.02. The reason for both this discrepancy
vacuum angles. Figure 2, the log-log plot(&?) vs|, hasa and the cutoff dependence of the loop dimension is simple to

FIG. 3. Variances in Table I. Extrapolating of the linear fit to
NmeasuredYi€lds an estimate for the statistical error in the original
measurement, in this case,easure 10 -83%=~0.015.

1. Loops have no fractal dimension

linear fit, suggesting understand. A single loop cannot be a fractal, but a single
infinite string can be. As it turns out, the measurements allow
|=0.232 R?0212 (N=3). a slightly stronger statement: Tlawerageloop is not a frac-

tal, whereas thaverageinfinite string is. The reason for this
This was measured falN;,easureq 10 000 strings being al- is simply the finite size of loops: A single infinite string
lowed to reach the length 50 000 in lattice ur(imking only ~ approaches a scaling behavior asymptotically for large scales
the “infinite” strings and using a lower cutoff of 500 lattice with no upper length scale arising, whereas a loop has a
units). Similar measurements on several ensembles with
fewer strings yield the values in Table I.

5.0 T T T T
On a log-log plot, the statistical variances may be fit by
the expression
4.0
0~0.0146 (M Npeasured >3
3.0 - g
so that ther expected in our measurement can be taken to beyog (R?)
~0.015, which is simply the intercept of the linear fit in the
log-log plot of the variance againsf/ Vyeasurea @S displayed 20 1
in Fig. 3.
10 -
B. Results for a perfect U1) symmetry
We can now proceed to the presentation of the results. For 0.0 : : : :
R . 0.0 1.0 2.0 3.0 4.0 5.0
a perfect Y1) symmetry, we have used a series of different 10g,(1)

discretizations of (1), each consisting dfl =2"—1 equidis-

tant angles. The range of such discretizations is from pgig 4. log-log plot of the loop contribution in Fig. 1. Only the
N=3, the lowest possible number of points ofilJto give  short-loop regime can be deemed useful, because there are very few
noncontractible contours, td= 255, a rather good approxi- long loops, making bad statistics. In addition to that, the counting is
mation to continuous symmetry, as we shall see from théiased by the exclusion of all loops longer th&nor shorter than
asymptotic behavior of the measurables for lakje any given length where the plot is read.
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TABLE II. Fractal dimensions of an average string with differ- strings as presented in Table Il. We see that the statistical
ent, increasingly finer, discretizations of(1). The averages are errors are still larger than the discretization errors coming
over infinite strings only. The lower cutoff is=500 in all en- from a particu]ar discretization of (@) (a|though the string
sembles. density, for instance, does depend on which discretization
one uses Table Il also suggests systematic errors: The

NumberN of Fractal Number  String length  higher the upper cutoff\, the lower the measured fractal
discretization dimension of cutoff dimension. This effect has been observed, in a diffferent con-
points onM D strings A text, for U(1) strings withN=3 [28]. Except for the short
3 2021 0.015 10000 50 000 sFrings withAzZOOO, the measurements, however, are con-
7 2022-0.015 10 000 50 000 ?_lsgelznt”vylth etaclr; ottr?er. To_fdetm:;Ie Wr]:ethetr thet_last line in
15 2 022-0.015 10 000 50 000 able Il is actually the manifestation of systematic errors or
not, let us investigate the possible sources for such a discrep-
31 2.022:0.015 10 000 50 000 . . . .
63 2 025-0.015 10000 50 000 ancy. Either an excluded-volume effect is active for interme-
107 2'01&0'015 10 000 50000 diate distances, making the strings slightly self-seeking,
5 2' - : 5 1 which forces us to accept a scale-dependent fractal dimen-
55 :007:0.025 3000 000 000 sion, which was one of the conclusions drawn for 3,
255 2.055-0.006 100 000 2000

U(1) strings in Ref[28]; we are counting too many strings
that are to form loops eventuallfput are not identified as
o ) o ) loops, because of the cutoff), which would naturally bias
cutoff through its finite size. A finite object has a well- {he fractal dimension towards a higher number for smaller
defined fractal dimension only on scales much smaller than, . or our averaging procedure introduces systematic errors.
the size of the object and much larger than the lattice spacrq explore which of these interpretations is the right one, we
ing. This means that only very large loops will exhibit “scal- heed to know how many of the strings that reach the length
ing” and then only on a finite range of scales, which makes, 416 0 be expected to close onto themselves again to form
the scaling concept rather risky to depend on as far as thI%ops, i.e., we need to know the prefactor and the exponent
fractal dimension of the loops is concerned. We will there-j,q1ved in Eq.(4). Once we know the number of wrongly
fore average over the |nf|n_|te—str|ng compone.nt of the St””?counted strings, we need to subtract their expected configu-
ensemble only, whenever it comes to extracting a fractal dizational parameters from the ensemble of infinite strings. As
mension. Figure 4 also suffers from the problem that the, fi-st approximation, we assume that these strings have the
averages are only taken over those loops that a_ctually SUIViVRerage loop properties extracted from the loop ensemble.
up the given length. An “average loop” would simply not be s will actually overcompensate for the effect that those
there anymore after we have walked the length, §&10.  girings lower the effective fractal dimension because they
This does not invalidate Eqe3)—(6), as these specifically ghoyid, on average, of course have lafgéthan the average

imply and require the finiteness of loops. We can sum this URyings that are actually counted as loops. This is easy to see
in the following way: The scaling concept enters the loopj, the larget limit, where they are obviously not &2=0,

distribution through the distribution of loop sizes rather thannereas the strings that are counted as loops are arriving
the average properties of a single loop, whereas the scalinggre for|— A. Thus we will overestimate errors coming
properties of the infinite strings can be interpreted as propgom this source. The procedure is now obvious: If the num-

erties of the average infinite string. ber density oftracedloops is
There is another qualifying statement to be made: If we

remind ourselves how E¢4) was derived from Eq(3), we dn=ql~°*1dl, (6)
have used the fractal dimensigim the cases to follow, the

fractal dimension of the infinite-string ensempble derive  then the number of strings expected to exceed the length
properties of the loop ensemble. This is justified only be-A i.e., the number of uncounted loops, is

cause of a lower loop-size cutofin addition to the upper
one, which ensures that the averaging is not over too small une o
an ensembleemployed in measuring. By having an appro- Nioop= fA dn(l)=q b—2
priate lower cutoff, we make sure that we use this fractal

dimension only for loops long enough to exhibit an The corrected’?
intermediate-length scale on which fractal behavior can be

approached, allowing us to use H@) in deriving (4) from Rz(n _puney—R2p _R2 punc @
(3). The measurements do then indeed seem to indicate that, ctiim Hoop? — Ttmiim - Hoop’loop:

with rather minor deviations, the intermediate-length regiquhere the indesxc stands for

¢ v ch | I ble looks lik “corrected” anam for “mea-
of a properly chosen fong-loop ensemble 100KS TKe ang, oy » for the infinite-string ensemble aﬁtﬁ)op is the mea-

infinite-string ensemble with an intermediate-range UPPELred value for the loop ensemble. In Table Il we list the

cutoff and the scaling relation E¢4) holds. configurational parametergandb, together Withnllgz,cp.

Including the (overcompensating correction Eq. (7)
should give us some idea of the systematic errors, but it
Using linear fits to log-log plots oR? vs |, with the error ~ corrects almost all the results of Table Il for the fractal di-

elimination and error estimation methods presented abovenension down by onl{p.~D —0.002, so that the statistical
we arrive at measurements for the fractal dimension ofrrors overshadow the systematic ones by far, except for the

—b+2

is then given by

2. Infinite-string ensemble
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TABLE lIl. Configurational parameterg andb of the loop distribution Eq(6) for U(1) strings, with the
expected number of loops unaccounted for in the measurements. It should be noted that there are systematic
computational errors that increase as the number of strings decreases, because the loops need to be grouped
in increasingly large length intervals. The errors quoted here are statistical errorg| aslgot rescaled by
the total string number, to make the extractiomyf}, more transparent.

NumberN of Number of Maximum
discretization “infinite” length of
points q b stringsn, stringsA Nigop
3 5576+ 1003 2.536:0.022 6334 50 000 3419
7 3398495 2.456-0.018 6394 50 000 5424
15 4506+ 628 2.5070.018 6382 50 000 3716
31 3930+ 646 2.492-0.020 6412 50 000 3920
63 4270-715 2.50@-0.020 6346 50 000 3820
127 3350- 637 2.4610.023 6373 50 000 5030
255 796+ 201 2.425-0.035 1903 1 000 000 66
255 368003200 2.4680.014 65773 2000 2240550

ensemble of 100 000 strings with upper cutdff=2000, argument leads to another important remadfkscaling is
where there are many miscounted loops, but small statisticaliolated, Eq. (5) is not only violated but also ambiguous
errors. In this case, the prediction gets corrected down t®ecause an unambiguous definitionfrequires an unam-
D.=2.031*+0.007. This makes all the measurements of thQ)iguous convention of how the averageRﬁ is to be ex-
fractal dimension at different intermediate and long scalegracted. Such a convention is not necessary if the string net-
just consistent with each other, so that we would need somgyork scales.

what better statistics than we have accessible at this moment This makes it very easy to check that the scaling hypoth-

to see whether there is some physical effect or just a consgjs is satisfied. First, when we compare the mean values of

spiracy of statistical fluctuations suggesting a tendency fof,o measurements f&r andb, they satisfy Eq(5) extremely
strings to be slightly self-seeking on intermediate scétleis well. The averageb in Table Il is 2.4821, whereas

is indeed implied by a running of the effective fractal dimen-, | o/ \ith the averagd, 2.0235, is 2.4826. All we need
sion, also implying weak violations of scale invariance, 3510 show now is that the fluctuations in Table Il are not sys-
observed forN=3 by Bradleyet al. [28]). However, we y

have not yet explored the third possible source of errors: th ematic. There are two ways of doing this: Either we improve

averaging procedure. Table Il was obtained by takiRg) the statistics of the measurement, hoping that the values con-

over the ensemble of strings, i.e., we measured the exponeYu‘?rge toward each othe{p_resumably somewhere near the
< in range [ 2.0235,2.024], which corresponds to the means

measured fob andD), or we show that the ratio diR?) to

1 N (R)? stays fixed. Here we prefer the latter of the two because

=3 R3(1)ec| it will confirm that there are no problems arising from the

NG specific averaging procedure we used, whereas simply in-

creasing the statistics does not give us this reassurance.

and defined =2/«. The question is whether this is the best Strictly speaking, showing that the ration ¢R?) to (R)?
possible way of defining a fractal dimension, i.e., whetherstays fixed does not prove scaling unless one showsathat
this is a good averaging procedure. However, if the resultshe ratios[(R(1)")]¥/(R(l)) stay fixed for infinite strings.
depend on the specifics of the averaging procedure, then the We did this by reproducing Table | with exactly the same
scaling hypothesis is in trouble because if, for example, thensemblegi.e., ensembles having the same random number
ratio [(R(1)"]Y"/(R(l)) varies withl, then the string net- seed, but usingl<(R)P instead ofl «(R?)P’2, as is used in
work obviously does not look the same on all scales. Thall the other measurements. The comparison is shown in
ratio of all the moments of the probability distribution for Table IV.
R(l) has to be such that all tHgR(1)")]*" stay in a fixed It can be seen that the measurements of the fractal dimen-
proportion to each other fdfé>1. In the polymer literature, sion agree with each other better than to be expected from
such ratios are called(\iniversa] amplitude ratios.” It turns  statistical errors alone. This indicates that there is not only no
out[23] that the fractal dimension for a truly scale-invariant measurable discrepancy between the scaling of different mo-
walk is also independent of the definition &%(1) itself, = ments of the distribution foR(l), but also there are correla-
which could be the mean end-to-end distafwhich is what  tions between those moments for any finite string ensemble,
we use, the radius of gyratioriwhich is the average separa- so that, unfortunately, one cannot really exploit more than
tion of all point pairs on a walk segment of lendth or the  one moment of the distribution to extract two or more statis-
root-mean-square distance of a monomer from the endpointically independenimeasurements fob from a single en-
So, if the averaging procedure is the reason for the discreemble. This is an important observation, as it justifies not
ancies in Table Il, scaling is noticeably violated up to lengthsonly to keep on using the averaging procedure we used from
of several tens of thousands of correlation lengths. The santée start, but it tells us that there is no gain of statistical
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TABLE IV. Comparison of two different ways of averagifyto obtain the fractal dimension. It can be
seen that both lowest moments of the probability distribution yield the same fractal dimension to higher
accuracy than expected from the statistical error margins.

AverageD with AverageD with
Number Number statistical error, statistical error,
of strings of ensembles based br(R?(1))P"2 based orl <(R(I))P
1000 10 2.02%0.012 2.0270.013
500 10 2.0220.014 2.0190.014
250 10 2.035:0.016 2.0290.018
100 10 2.021*0.030 2.02#0.027

accuracy in keeping track of more than one such average. In the continuous case, the geodesic rule can be realized
We conclude that the averaging procedure does not introducass follows. Let the random field assignment on a spatial ver-
additional systematic errors in Table Il. We will therefore tex be a random vector of the upper unit half sphere. If the
continue to measurB by fitting D/2 in 1=(R%)P2 only. vacuum manifoldM were to be this half sphere only, the
Summing up our analysis of Table Il, we conclude thatlength of the geodesic between two pointsbhwould just
our averaging procedure does not introduce systematic ebe the angle between the two corresponding vectors. If
rors, but correcting for the wrong counting of the loops M=RP?, the geodesic is therefore either this angle or its
longer thanA as infinite makes the measureme@ist) con-  complement, whatever is smalléhe probability that a pair
sistent with each other. Keeping in mind, however, that, forof points is connected by a geodesic of length exasily is
the above explained reasons, this correction is likely to beerg. Whenever we need to take the complement of the
too generous, we have to agree with the conclusior2®f angle between the two vectors on the upper half sphere, the
that the existence of a slightly scale-dependent fractal dimergeodesic will therefore cross the equator. This happens if the
sion has to be accepted as given. This is further supported liyo field angles have a dot product smaller than zero. Since
the observations in Sec. IVA. Table Il also suggests that theéhere are three vertices to each face of the tetrahedra on our
very-long-string limit ofD may be exactly 2. lattice, we need to take all three pairwise dot products. If the
curve drawn by the geodesics has crossed the equator an
even number of times, then it is contractible, otherwise a
o string has to pass through the corresponding triangle. Of
All the qualitative arguments stay the same for®R*  course, a similar criterion has to be possible for ahy
symmetry, as it is exhibited, e.qg., by nemaj[ic quuid Crystalsstring' and was used for th#, strings appearing in the
[1]. For anRP? symmetry the vacuum manifold is a sphere breaking of S@8) in [30], using a bounding sphere instead

with opposite points identifieIRP? is therefore identical to  f 5 bounding circle. If a closed path on the 8Dmanifold
S?1Z, or SO3)/0(2)]. In nematic liquid crystals the occur-

rence of this symmetry is easily understood: The molecules
are mirror-symmetric rods or disks and the ground state of
the theory is reached when all rods have the same orienta-
tion. If the phase change can propagate faster than the fluc-
tuations in the rotational degrees of freedom of the mol-

ecules, this is only achievable locallg9].

We have used only a minimal discretization and a con-
tinuous RP? group to compare measurements of configura-
tional parameters. The minimal discretization consists of the
vertices of an icosahedron embedded in the sphere, as de-
picted in Fig. 5. The uniqueness of the geodesic rule and the
definitions of noncontractible paths on this discretization of
RP? are both immediately obvious from Fig. 5. Noncontract-
ible paths are those that follow an odd number of those links
that cross the equator. Flux conservation is easily established
t.OO: Every _tetrahe_dron edge hf’is elthe_r one of the brOkeBbtained by discretizing the points on the sphere by the vertices of
lines associated with (i.e.,_ it ‘?a”'es the f!eld values into the an embedded icosahedron. We have to imagine that we look at the
other half sphereor a solid line. Changing any one of the icosanedron facing one of its triangles head-on. The “sphere” is
links with respect to this behavior changes the flux in tWocompleted by identifying opposite points. Where necessary to iden-
triangles. Thus the total flux can only be changed in steps offy all geodesics, points of the lower “half sphere” have been
two (or zerg and the number of triangles having strings go-drawn, connected by dashed lines. Every point can be connected
ing through them is always even. By going through the dif-with any other point by exactly one of the links, so that the geodesic
ferent combinations, it is easy to convince oneself that theule is unique. The noncontractible paths are the ones that go along
thus constructed strings are also self-avoiding, i.e., that nan odd number of broken lines, because broken lines lead onto the
tetrahedron has four faces penetrated by strings. other half sphere.

C. Results for a perfectRP? symmetry

FIG. 5. Minimal discretization ofRP? and its geodesics. It is
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TABLE V. Measurements for the fractal dimension of continud® strings.

RP? Representation Number of strings Cutoff Fractal dimensiorD b

Continuous 3000 100 000 1.979.023 2.59-0.05
100 000 2000 1.9/ 0.001 2.64%0.014

Discrete 10 000 10 000 1.99.014 2.62:0.03

crosses the bounding sphere an odd number of times, it isxhibit these ambiguities, but does allow two strings to pen-
noncontractible. Therefore, if the field values on the verticesetrate a tetrahedron. The appropriate proof is developed in
of a particular triangle ardin the “vector on the upper Appendix A.

half sphere” representationthe vectors v;, i=1,2,3, We should mention that S@) strings have been mea-
then the string flux through the appropriate triangle issured t%hﬁve?simrill-arhtendelncyti;h?;f)I'O\E\éeafra?ta' dimen-
n:%{1—sgr[(51-52)(52~53)(51-53)]}. It cannot have a Sionand therefore higher values forKibble [30 arrives at
negative sign becaudtP? strings are nonorientable. This is values ofD =1.950+ 0.037 andb=2.546+-0.065. It is there-

a direct consequence of the nonorientable nature of thg)r_e possible t_hat suph deylatlons are generic for elmer.
source field: It is apparent that the sum of two noncontractStrings or for higher-dimensional vacuum manifolds. We will

ible paths orRPN is always contractible as a noncontractible discuss this issue further later.
path is one that ends in the antipode of the starting point. The

concatenation of two noncontractible paths therefore ends at Ill. STRING PERCOLATION
the starting point itself. This means that aR" string is AND BIASED SYMMETRY BREAKING
any other string’s antistring in the sense that any two strings A. Low string density

(parallel to each othgrcan form objects that are no longer . o

topologically stabilized. Flux conservation is easily proved Drawing lessons from polymer statistics, the fact that our
[16], but a continuous representation of the? symmetry algorithm generates nef’;\rly Browman strings could be a re-
suffers from the same uniqueness problems as (&) U sult of the dense packmg of strings. From what we have
string on a cubic lattice because a single tetrahedron cafieasured so far, 2therg is a strong caveat to that statement:
carry two strings [imagine, for instance, the vectors The continuouk P strings are actually de_nser @strings
(61,61 =(0,0), (6,,)= (72— €,0), (85, ds)=(m/2—e, per_che[25])“than th(_a .corltlnuqu§ (] strings (1/4), but
2713), and @, bs) = (7/2— €,4/3), which for. a range.of ]?Xhlblt more seIf—a_v0|d|r_19 statistics. This trend algo holds
small e has every face penetrated by a stiingo avoid or the minimally discretized ensembl{a§/18 -for RP and.
random matching of open string segmefdich might in- 2/9 _folr U(1)]. So how does the string density affect string
troduce an unnatural bias towards Brownian statistics orftatistics? » _ _
large scale§6]), we chose to connect the free ends in such a We have already shown that for minimally discretized
way that in case of ambiguities, every string goes through &(1) Strings, a Hagedorn-like transitid81-33 occurs be-
pair of faces that share an edge of lengthi.e., the edge low a critical string density{6]. According to Vachaspati

length of the bcc lattice. The measured ensembleg Rt [25], we can achieve variations in the string density by in-
strings are listed in Table V. ducing correlations in the order parameter by lifting the de-

The continuousRP? strings do not seem any more J€neracy of the manifold of equilibrium states. This reduces

Brownian than the ones that are forced to be self-avoidingt€ Probability of a string penetrating the face of a lattice
(thus we can generate an ensemble with akeragestring

This may indicatdas in the case of (1)] that the discreti- S - . ; .
zation of the vacuum manifold does not significantly affectdens'ty fixed at will; physically, one can think of this as

the measurements for perfect symmetry, maybe because \ﬁé)plying an external fiel_d, which spoils_the S-‘/_mme”y _Of pos-
have not allowed random reassignments of string pairs t§'P/€ ground statgsbut increasesthe dimensiorD, which
each other, but we have not checked whether a random s@fgues against the identification of strings with polymers.
lution to the problem of uniqueness would indeed bias thel here is a critical density below which there are no infinite
statistics towards Brownian configurations. In any case, ngtings: In the low-density phase there is a scakhat ap-
discretizations ofRP2, other than the minimal one, have Pears inthe loop length distribution

been investigated at this stage. In fact, no discretization that dn=al Pe—c'd| @®)
would be finer than the minimal one, but still force self-

avoidance, is known to us. Interestingly enough, a discretiyg g cutoff. As the critical density is approached from below,
zation produced by embedding a tetrakaidekahedron into the_, g and the mean square fluctuation in the loop length
two-sphere is uniform. Uniform distribution of the lattice

points on the sphere is a necessary criterion for unbiased data S=(1%)—(1)?

(cf. the discussion in the following sectign$lowever, it is

easy to convince oneself that many of the vector pairs in thadiverges(see exponenty and ¢ in Table VII).

scheme are at right angles to each other, introducing ambi- This divergence signals a phase transition, in some ways
guities in the definition of the string flux through a triangle. analogous to the Hagedorn transition in relativistic string

Another discretization, achieved by embedding a dodecahdheory at finite temperature. This has been implicated in
dron in the sphere, produces a discretization that does nobany branches of physics. Previous studig@4| deal with
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string dynamics and can treat the ensemble in thermal equstatistical-mechanics arguments is that, at low densities, the
librium. The ensemble if34] is therefore very appropriate loop distribution is described by Ed8), with b=3. Va-
for situations where the critical temperature is approachedhaspati, however, measures values consistent wiVitBin
slowly. Vachaspati's algorithm enables us to measure ditarge statistical errojs As one increases the string density
reCtly the String statistics such as the critical denSity, th%gain, approaching the Sca”ng regim’approaches Zero
of the hypothesis of scale invariance for tmitial condi- 55 the inverse of some characteristic length scale arising
tions which cannot be expected to be thermalized. from the breakdown of scale invariance
Vachaspati’'s argument, relating the probability of a string
B. Low string density and the Hagedorn transition forming at a particular lattice plaquette to the Hagedorn tran-
he “mi . y h sition, actually does not go far enough. It supports the notion
From the “microscopic” point of view, Vachaspa2S] ¢ the string is getting wigglier as we decrease the density,

argued for such a Hagedorn-type transition to occur at IoV\(Nhich could, strictly speaking, result in just a rescaling of

string densmes V.V'th the following reasoning. ConS|der.asome of the parameters, but none of the exponents: The scal-
string formation simulation on a cubic lattice. The probabil-; L .
ing function in Eq.(2) could converge towards a different

ity of a string passing through a certain face 1 of the cell is

ps. Since the plaquette opposite face 1 is causally discongonStam’ the factoq in Eq. (6) could change, all without

nected, the probability for it to have a string passing througtf@ngingD or b, which determine the global properties of
it is also p, regardless of the actual situation at face 1_j[he network. after the local prope'rtles have been .absorbed
Therefore, the probability for a string to bend after entering d"t0 appropriate prefactors. In particular, thempletedisap-
cell is 1— ps. Now, if we reduceps, the bending probability Pearance of mﬂmte strings is not explained convincingly.
increases and the chances of the string closing up to form What Vachaspati observes in Monte Carlo measurements,
loop also increases. As Vachaspati argues, “This tells us thdtowever,can be explained on the microscopic level. Va-
by reducing the probability of string formation, or equiva- chaspati varies the string density by decreaginghe prob-
lently, by decreasing the string density, we can decrease thahility for a link to have the value-1 assigned to it. Let us
infinite string density and increase the loop density.” take it to the extreme and assume that all the links that have
Vachaspati then goes on to construct a model With —1 assigned to them are so rare that they are usually isolated
strings(i.e., nonorientable stringsin which he assigns either from each other, submerged into a sea of links with field
+ 1 with probability 1-p or —1 with probabilityp to each  value +1. Then it is obvious that a string loop of minimal
link of the lattice (on a periodic lattice A string is said to  length winds around each of these links, so that there will be
pass through a plaquette if the product of the field values omothing but a few isolated short string loops. We can take it
the associated links is 1. Although reminiscent of it, this is  further and ask ourselves what happens when two such links
not quite identical to the way we constructed ®R? strings  are adjacent to each other. If they are consecutive links with
in Sec. Ill A, because whether-al or a—1 is “assigned” the same orientation, they will have their own loops of length
to a link in the continuou&P? case depends on the relative 4; if they are in different spatial orientations, a loop of length
angles between the three vectors involved, so that the assig8-will form, as depicted in Fig. 6. This figure also illustrates
ments to the links are not entirely uncorrelated. If they werethat, because the length of the strings seems to be intimately
then the probability of arRP? string passing through a tri- linked to the size of the- 1-link clusters,in the Vachaspati
angular(or in fact any plaquette should bg, whereas it is model, the Hagedorn transition is almost a bond percolation
(for a triangular plaquette and continuoi$?) 1/m [25]. problem except that parallel bonds touching each other,
The way strings are constructed in RE25], however, is  bonds along the same lindo not connect their strings with
appropriate to modeRP” strings. We can see this by the each other and parallel bonds that are just one lattice spacing
following argument. It is well known that the different com- apart do. There are more configurations of thesk links
ponents of a random unit vector RN, in the limit N—o,  that break this correspondence between the Vachaspati
become mutually uncorrelated Gaussian random variablesiodel and bond percolatioffe.g., a flat cross of four
with standard deviationr=\/N. The inner product of any — 1-links produces two separate logpEhus, although there
two random unit vectors therefore will have a positive oris no one-to-one correspondence, one still intuitively expects
negative sign with equal probability. The relative angles to @he Hagedorn threshold to be close to the bond percolation
third unit vector and in particular their signs are then com-threshold. Indeed, Vachaspati measures a percolation thresh-
pletely uncorrelated to this angle, so that taking the sign obld of p.~0.29, while the threshold for bond percolation on
the product of uncorrelated Gaussian random variablea simple cubic lattice in three dimensiongis=0.3116[35].
would indicate whether or not a sequence of geodesics béFhere is more to be learned from the correspondence of the
tween random points 08*/Z, will cross the horizon. Vachaspati model with bond percolation. To get a respect-
With this model Vachaspati observed that, as the symmeable number of large but isolated lattice animals, we have to
try bias is increased, a lot of string mass is transferred fronapproach the percolation threshold from below. At the
infinite strings to loops, so that the loop density actuallythreshold, the percolating cluster has a well-defined fractal
increases. This is not what one would expect, e.g., from stadimension. Thus we conclude that scaling must be restored
tistical arguments for a box ofnoninteracting strings in  as the percolation threshold is approached from below and a
equilibrium[33], so that one should not assumeriori that  fractal dimension will begin to become well defined. Finally,
the string statistics right at the phase transition will follow we shall just mention that one can easily derive the general
statistical-mechanics arguments. Another prediction oform of Eq.(8) by similar percolation arguments.
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invariant. In fact, in ascaleinvariant system(if it stays scale
T N R invariany, dynamical scaling is a misplaced concept because
- —§J§ S PR S = there is no length scale that could evolve in time. Parameters
P P SE SIS that arenot scale invariant, and whose dynamical scaling it
therefore makes sense to observe, e.g., the average string-
string separation, are those parameters that are affected by
lattice effects in the VV algorithm. The work in Relf5]
: o - implies that the ratio of the densities in string loops and in
P infinite strings may be freely variable, based on the realiza-
tion that this ratio depends on the lattice description invoked.
We should stress that the density in loops depends on the
lattice. Our tetrahedral lattice allows smaller logps units
of correlation lengthsthan a cubic lattice, and one expects
more loops to appear because the low cutoff in @g.gets
shifted to lower values. There is also a difference in this ratio
depending on the discretization of the vacuum manifold and
; , : on the vacuum manifold itself. Thus, whereas we agree with
P : the general argument of Rgb6], we will show in Sec. VIA
. ' that there is probably a lower limit to the amount of infinite
o /l , string that has to appear and infinite strings would therefore
X

be a generic feature of the VV algorithm on a regular lattice.
This issue is still controversial, but in some simple cases,
such as the Vachaspati model, we can develop a percolation
] o ] ) _ theory understanding for the emergence of an infinite string
. FIQ. 6. String loops formeq in this model, with one isolated link network. Had Vachaspati used a tetrahedral lattice, there
with field value —1 (a) and with two[(b)—(d)] or three[(e)-(0)]  \yqyq still be infinite strings, as the bond percolation prob-

such links adjacent to each other. The fact that infinite strings dis[em threshold for the bec lattice .= 0 1803 and the svm-
appear looks very reminiscent of a bond percolation problem for themetric case has=0 5> The rpe%asoh why the bondy er-
“(—1) links,” except that two consecutive strings, if they are P=0.5~Pc. y P

aligned, do not surround themselves with pieces of the same strin °".”‘“°‘.‘ thfresholhd IS redlfced cohmpareq to thg smrw]ple r?UbIC
[the prototype igc), other examples aree), (i), and (k)], whereas ttice is, from the percolation theory viewpoint, that there

neighboring parallel links déthe prototype is nowd), with other ~ '€ more bonds per lattice site. Within the string network
examples beingj)—(m)]. picture, the reason is that we have a finer mesh and therefore

a higher string density. In fact, on any three-dimensional
lattice p.<<0.5, so that the appearance of infinite strings is

Not only can we now claim to understand the microscopiGagice independent. Serious lattice ambiguities would arise

a§pects of the lattice description of.t.his Hagedorn-like tran—Only if strings(under the same physical conditiomercolate
sition, but we also expect this transition to have many prop

_on one lattice, but not on another, i.e. pif lies in between

erties of a pefr.colatlon transition. We can relate many varlyercolation thresholds of different lattices. No such model is
ables and critical exponents of the Hagedorn transition tg . -

critical behavior in_standard_ pe_rcol_ati(_)n t_ransitions. With his Because of its better correspondence to a physical situa-
model, Vachaspati got qualitative !nd|cat|9n§ (.)f many of thetion, let us consider another brief example, taken from the
results that are to f.OHOW here. With the mﬂmte—lgttlce and measurements in Sec. IV. Take the tetrahedral lattice with a
the hash-table algorithms used(] and p.resented |f&6,7] minimal discretization of (). Let us denote the three pos-
we havg some advantage when extracting numerlcall dgta Uble field values by 0, 1, and 2. We introduce a bias in the
attempting reasonably large ensembles for good statistics. symmetry such that the value 2 is assigned with the probabil-
) o S _ ity ps and the other two values have the probabilities
C. String percolation in the Vachaspati-Vilenkin algorithm (1—pJ)/2. Without loss of generality, let us constrain our-
Now we need to go back to the more realistic model: theselves to biases withs<3. We can produce infinite strings
Vachaspati-Vilenkin method on a tetrahedral lattice. Theonly if all three field values percolate. In particular, this im-
string density can be varig@nce the lattice is chosgonly  plies thatps>p., where the critical valu@, is the site per-
by lifting the degeneracy in the vacuum states, i.e., by makeolation threshold of a bcc latticga,~0.246 [35]. In the
ing some vacuum states less likely than others. Once thenbiased casps= 3. Again, this is higher than the site per-
details of the discretization of space and of the vacuuntolation onany sensible lattice such that the appearance of
manifold are choserthe initial string density, and in par- infinite strings is a generic feature. From measurements in
ticular the density in infinite strings, can be changed only bySec. IV, we deduce.=0.2476=0.0014. The agreement is
spoiling the vacuum symmetryhere has been recent work almost suspiciously good, but certainly justifies the percola-
on dynamical scaling5]. Dynamical scaling is quite differ- tion theory arguments for an intuitive understanding of the
ent from scale invariance and is exhibited if the system lookd1agedorn transition. Had we taken a simple cubic lattice, we
statistically the same at all times, on length scales that mawould still be above the percolation threshgid=0.3116
vary with time according to some power law or some otherand get infinite string$17]. In both Vachaspati'?, model
function of time. This does not imply that the system is scaleand the minimally discretized (@) model we get infinite
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strings irrespective of the lattice we are using. To be precisdyriangular plaquettes on a tetrahedral lattice is twice the num-
a diamond lattice would not allow site percolation for ber of tetrahedra, the average number of strings per tetrahe-
p=31. However, because it has hexagonal “plaquettéie  dron is then D,. Whenever we start tracing a string, we start
quotation marks are to indicate that the plaquettes are na@tt a randomly chosen string segmeput of all possible
planap, it is unsuitable not only for a simulation of the segments on the imagined infinite lattic&hus we will pick
Kibble mechanism, but also for the percolation theory argu€lements belonging to an infinite string according to their
ment developed here. This is because two consecutivéensity ratios, such that
plaquettes are not everywhere connected by link walks of
length one, so that the lattice points with disfavored vacuum Nigop
values do not need to neighbor each other directly to allow Ploop™ Protally — - (10
strings to percolate and site percolation witbxtnearest
neighbors should be our reference in this case. Percolatiowhere N, is the number of strings we have traced in the
phenomena have long been known to be independent of thensemble andl,,, is the number of those that turned out to
microscopic details of the lattice. This may lend some supbe loops. The unknown parametergs. For the minimally
port to the assumption that, in Vachaspati:s model (and  discretized W1) manifold, the sunC of Eq. (9) is just
maybe more generally fdt, string9 and for U1) strings the
emergence of a network of infinite strings is a generic fea- C=2e"?+e 7"
ture. Although the correspondence of the Hagedorn transi-
tion to a percolation phenomenon seems rather strong, wend the probability for a triangle to exhibit all three vacuum
suffer from the same deficiency here as most of percolationalues on its vertices reduces to the very simple form
theory does: There is no analytic proof.

In many respects, the best we can hope for is to establish 3!
a better understanding through better and more numerical pt_@'
measurements. The next section is therefore dedicated to the
results of various measurables of the percolation transitiorFor other discretizations of (1) we use exact numerical
We will present more arguments for the correspondence afummations to extragi;, as the functional form becomes a
the string ensembles with a percolation theory picture laterather complicated sum of a number of terms that increases

(11)

when we discuss the results of those measurements. asN? and has to be evaluated for all valuesspfised in the
data set. It turns out that the defect density increases slightly
IV. NUMERICAL RESULTS when a finer discretization of the vacuum manifold is used.
FOR BIASED STRING FORMATION This tendency is also observed in Monte Carlo simulations of

A U(L) strings texture formation21] and monopole formatiofil5] and in
: the RP?-string measurements in Sec. IV B. The string den-
The following convention has been used to introduce ssity per tetrahedron in terms of the bias, for the minimal
bias for U1) strings. We discretized the () manifold by  discretization of W1), is therefore given by
N=2"—1 points and assigned the following probabilities to

each of these pointme{0,1,2... N—1}: 2x3!
Prtotal™ (28”7—2+ ~ 71)3 .
p(m)=C~exd — ncog2mm/N)],

This can be used as a reparametrization of the bias, so that all

where 7 is the bias parameter ar@ simply normalizes the variablesX scaling like Xo| 7— 7*|X near the critical point

probabilities will also scale asXe«|pa— prowl®s as it is a smooth and
N—1 analytic function of the bias. Note that, e.g., the mass density
C= exg—ncog2mm/N)]. (9) in loops cannot be tgl_<en as _such_a reparametrization, as it is
m=0 not smooth at the critical point. Figure 9 shows the separate

mass densities in infinite strings and loops. Note that the
Unless stated otherwise, we will quote results from the mini-energy in loops at the percolation transition still exceeds the
mal discretization of (1) in this section, i.e.N=3. The energy in infinite string at zero bias. In analogy with the
reason why this is the best-studied ensemble is that it corrgpolymer literature, we could say that this transitiocmhen
sponds most closely to a site percolation problem and thereapproached from the nonpercolating phasevery efficient
fore relates best to the discussion of the results in Sec. Mn pumping energy into the entropy terms, i.e., in utilizing
First, we confirm that Eq(8) gives an extremely good fit for new degrees of freedom as the bias is lowered. This is why
the loop distribution beyond the percolation threshold. Typi-we call it a Hagedorn-like transition: The Hagedorn transi-
cal such fits are shown in Fig. 7. In Fig. 8 we compare thetion [31] is associated with an exponential increase in the
loop distributions for different biases. It can be seen that fodegrees of freedom, such th@t the thermal situationthe
low bias the string density in loops increases with increasindHagedorn temperature is not reachable, as all the energy,
bias, in agreement with Vachaspati's measurements. Thgumped into the system to further increase the temperature,
density in loops as a function af is shown in Fig. 9. The goes into entropic terms of the Helmholtz free energy. How-
mass density in loop6n units of segments per tetrahedyon ever, since our model does not deal with a thermalized en-
is obtained in the following way. Lgi; be the probability for semble(or with any dynamics at allwe can still reach do-
a triangle to carry a string segment. Since the number ofnains beyond this Hagedorn-like transition.
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FIG. 7. Typical fits to Eq(8), with different values of the bias. Where infinite strings are present, no cutoff can be identified. Where
A<1/c (i.e., for =0.4), the cutoff cannot be seen, as the strings in this ensemble are too short. For higher values of the bias, the cutoff can
be recognized clearly. The dashed lines are the fits using8tqNo deviations from a behavior of the type in E8) can be recognized.

The ensemble consists of 100 000 strings with cutoff 2000.

Figure 9 allows us to measure the location of the percoeritical exponent associated with the strength of the infinite

lation threshold by fitting a power law of the form network. Since the total mass density is a smooth function of
. p 7, B is also associated with the mass density in loppée
P ("= 7). do this by trying different fixed values of* and taking the

. . one that gives the smallest sum of residuals on a log-log
(Where appropriate, the exponents are named according to

their use in percolation theory. In percolation the@rys the

40
c 020
o
©
T 2
o
| 5]
§ 2 0.10
= (]
A = &
< n=0.4 g
g n=0.2 |
n= 0.00 . N . .
] 0.0 02 04 0.6 0.8
n=0.6 bias n
%% 2.0 30 4.0 FIG. 9. Mass density in string segments belonging to lo@ps
log (D) units of one per tetrahedrpiisolid line), in infinite strings(dashed

line), and the total mass density, given by E(&)) and(11). The
FIG. 8. Comparison of the loop distributions for different bias. loop density increases as we approach the percolation threshold
It can be seen that the loop density is increased for small bias. Fdrom above, and energy from infinite string is transferred into the
large bias, the running of the cutoff length can be observed. loop ensemble.
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FIG. 10. Fractal dimension of the infinite-string ensemble as a FIG. 11. Fractal dimension of the infinite-string ensemble as a
function of the bias, plotted for different values of the upper lengthfunction of the bias parameter, plotted for different discretizations

cutoff A. The measurements are for nearly continuos) U of U(1). The critical biases can be found in Table VII and in Fig.
17.

least-squares fit. This means that the statistical errors are

obtained in a less accurate procedure than in Sec. lll: Insteddve features are noteworthy.

of taking many different ensembles, we take the fluctuations (i) The statistical errors increase with increasing bias be-

of #* to be such that the sum of the error squares in th&¢ause the number of infinite strings in the ensemble becomes

linear fit to the plot of loge,) Vs log(*—7) is allowed to ~ smaller.

fluctuate by a factor 2 around its minimum. The respective (i) The fractal dimension stays nearly constant for very

slopes will usually differ by an amount of the order of the small bias. We observe that tiee dependence dd as mea-

statistical error. Since we have to vary both a lower and asured in Sec. Ill isiot a statistical fluctuation.

upper cutoff, as well as the estimate fgt, when searching (iii) The fractal dimension not only becomes hard to mea-

for the best fit, this method reduces the large computationaure near the percolation threshold, but also becomes ill de-

effort that would be involved if we had extracted statisticalfined beyond it because we are counting many strings

errors by measuring many different ensembles for everyvrongly as infinite (I, diverges at the critical point

symmetry group. Quite often, we get very large estimatedvhereas they will eventually turn back onto themselves and

errors in7* and the critical exponents because of the manyform loops.

free variables involved. A proper analysis of corrections to (iv) The behavior is largely independent of the particular

scaling, as done in Ref28] for the minimally discretized ~discretization used, except for the obvious shiftzih, pro-

U(1) strings, is necessary, but will be done elsewhere. Wdounced only folN=3.

measure (v) The measurements are consistent with a possible as-
sumption that, ad\ — o, D=2 right up to the critical point.

B=0.54+0.10, Measurements for the average loop size—note that we

mean the average size of a loop that a randomly chosen

where the fit has been done in the regigpe[0.22,0.26%,  string segment belongs to—are shown in Figs. 12 and 13. In

and the errors are associated with the uncertaintyy’n  Fig. 13 the effects of a finite cutoff are also explained. The

which is measured to give the best fit®t=0.279-0.005.  behavior is just as one would expect from percolation theory:

If the uncertainty iny* is large, the errors foB quickly get

out of hand. The criterion of whether or not one gets a good 4000.0

fit is not very efficient in findingy™, but it is the best we can

do. In percolation theory there is a useful procedafeRef.

[35], p. 72 that involves observing how the probability to 3000.0

find a lattice-spanning cluster, as a functiorppfcales with

the size of the lattice. For example, one could look at how

the point where this probability i$ scales with the system T’) 2000.0

size and then extrapolate where this point will end up as the

lattice size goes to infinity. This gives a very good estimate

for the percolation threshold only if one keeps track of all 1000.0

clusters generated on a given lattice. We only trace one

string at a time, not worrying about the rest of the lattice, so

that this method of identifying the percolation threshold does 0.0
not work. '
The fractal dimension is plotted in Fig. 10 for nearly con-
tinuous U1), but with different upper cutoffd,, and in Fig. FIG. 12. Average length of a loop in the minimal discretization

11 for A =50 000, but with different discretizations of(l. of U(1), as a function of the biag. Here A =50 000.
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FIG. 14. Loop distribution exponeri in Eqg. (8), for an en-
FIG. 13. Logarithm of the average length of a Idagith U(1) semble of 10 000 strings with cutoff =50 000.
nearly continuousN=255,127 as a function of the biasg, for
different cutoffs. For the solid lin@ =1 000 000, whereas for the ' Thjs js not a thermal partition function, but should rather be
dashed line it is\ =50 000. They shouldto a very good approxi-  yjewed as a generating function for the moments of the loop

mation have the same critical bias. However, the lower-cutoff peaksize distribution. If we wanted to use thermodynamics lan-

has an inflection point, where it deviates from the power-law be'guage, then the factdr **! would be proportional to the

havior, well before'the critical poir(at aro.u.ndn=0.36), Wherelwe ensity of states for giveh(or one could say it is a suitably
need to stop the fits to measure the critical exponents. This effect .. - - )
. . ) . - defined integration measure, which amounts to the sama
gets worse with smaller cutoffs and gives rise to inaccuracies in . - .
A L &=1/c fulfills the role of a temperature, as is shown in Ap-
estimating the exact position of*. ) . .
pendix C. This only serves to show that a thermodynamic
Qomenclature is inappropriate, as the threshold for a dynami-
ﬁal Hagedorn transition really lies at a finite temperature, and
instead of having the temperature diverge at the critical
&oint, one would have to factor out the divergent terms and
pull them into the density of states. This distinction becomes
meaningless in our nonthermal ensemble. Our “partition
Moo | 71— 7] function” can equally well be viewed as a sum over the
loop/ =1 7771 density of states only, with a critical temperatioe density
dependence. Although these names are slightly inappropri-
ate, they give the right behavior, e.g., for the average “en-
ergy” (lioop in the nonpercolating phase

In the nonpercolating phase, the main contribution come
from gradually larger clusters as we approach the percolatio
threshold.

Let us assume the average loop size near the percolati
threshold scales as

The best power-law fits to the loop size give
WZ(N:B) =0.279:0.004, y=1.59+0.10,

measured in the rangee[0.33,0.9. Again, large errors are (loop) = —z—l%mz.

associated with the uncertainty of where exactly the percola-

tion threshold lies. This again amounts to a problem with o o

finite-size effects: Unlesél o) <A, the ensemble average Since the parametets andc are crucial in this interpreta-
will miss out on large contributions from loops wrongly tion, measurements for them are shown in Figs. 14 and 15.
counted as infinite strings.

For bias values below the percolation threshold there is no ' *
critical exponent. In this domain the average loop length is a
divergent function of the upper cutoff and an average length
becomes ill defined. This is obvious from Edd) and (5)
and the fact that(lbop)mffl‘b*zdl while D>3/2. This
problem is alleviated in the nonpercolating regirtvehere
the loop distribution is exponentially suppressed by an addi-
tional factor ofe "), as long ag=1/c<A, i.e., for values
of n not too close to the critical bias. The same argument
holds for any higher momert},,) of the loop distribution.

Another way of investigating the ensemble is by means of

0.010

¢ 0.005

0.000

a partition function, which is théunnormalizedd sum over -0.005 . ‘ .
probabilitiesp(l) 0.0 0.2 01.]4 06 0.8
7= z | ~b+lg—cl (12) FIG. 15. Parametar in Eq. (8) for the same ensemble as in Fig.

I 14.
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8.0 . : : TABLE VI. Summary of the definition of the critical exponents.

g=1coc(n—y*) "M
<|Ioop>°<(77_ 7)Y
(fop=(n=n")""

(p)oc(m*—m)*

(d/d5){lieop ]- Another reasonable definition of a suscepti-
bility would be to define it(at least for »>#*) as
(d/d7)pieop, Which then diverges with the exponent

10
(=5~ 1). — y _
00,5 oz o4 Y 08 This concludes the discussion of the critical behavior of
n the ensemble with a minimal discretization of 1l Mea-

surements for the other ensembles with gradually finer dis-
FIG. 16. Parameteg= 1/c in Eq. (8) for the same ensemble as Cretizations of the vacuum manifold are listed in Table VII.
in Fig. 14. Very large values in the regiof< 5* just correspond to  Note that the measurements supercede the or{€g,iwhere
statistical fluctuations of around zero. the string ensembles were smaller and fewer compared to the
ones available now. A reminder of which exponent is asso-
Although the parametets andc are comparably easy to ciated with which variable can be found in Table VI.
measure, since one does not have to gugsshere are still Ideally, we should have two ensembles for every discreti-
large statistical fluctuations fdr. For > »*, b is allowed to  zation, one with a small\, allowing us to trace a larger
be smaller than 2, since the scaling relation &gno longer  number of strings to extract the exponantand one with
holds. It becomes more difficult to measureat large bias, very largeA, to measure the divergences in the average loop
but it is also less important there since the exponential cutof§jze, to which the loops of lengii=A contribute the most,
dominates the loop size distribution. The diverging lengthas we approach the critical point. However, we do not notice
scale associated with the phase transitioéi=isl/c, which is  too much of a reduction of statistical errors by doing tlasis

plotted in Fig. 16. is done forN=255), so these ensembles have not been gen-
There is another critical exponent associated with the dierated. A cutoff ofA =2000 is clearly too low to give sen-

vergence of: sible answers: The very long string ensemble agrees with the

o~ 1o medium-cutoff ensembles, whereas the ensemble with cutoff

gx(n=n7) 7. A =2000 allows hardly any measurements and the one ex-

Implicitly, we measure for the percolation threshold ponent that is measn_JrabIe is obviously affectgt_j by severe
7" =0.280+ 0.003. The critical exponent is systematic errors. This also means that on a finite lattice of

' T about 48 lattice points, which amounts to a similar cutoff,
o=0.46+0.02. measurements like the ones presented here are virtually im-

_ _ _ - possible. In this way we can understand that—for lack of an
Before concluding this section, we measure the critical exinfinite-lattice formalism of the kind we are using for these

ponent in ensembles—no one, to our knowledge, has picked up on
2 i Vachaspati’'s model to investigate the Hagedorn transition
(loop = (7= 7")"", more closely.

Another consequence of finite cutoff effects is that the
measurements of give the best fits to a power law and are
Y=3.79+0.14. therefore the best indicators of where the percolation thresh-
old lies. The reason for this is simple to understand: Large
This is the exponent associated with what we called “sus{oops give the main contribution towards the length average
ceptibility” in Ref. [6], S:<||200p>_<lloop>2! since the diverg- and finite cutoff effects will eventually flatten the peak,
ing behavior 0f<|ﬁ)0p> dominates in the expression f@&  Which should diverge at the critical bias. However, the con-
becausey>21y. In terms of the partition function, it is tribution of large loops td|f,,,) is even more important and
finite cutoff effects will spoil the power-law approach to the
2\ o1 critical point at a much earlier stage, such thlahas much
<|I00p>_z EZZ larger errors associated with it, and it is recommendable to
use estimates fop™ that were obtained from fits of the av-
such that(lﬁ,op> =—Z"Y(d/dc)(Z(l,o0p). When compared erage loop size to a power-law behavior. The same is true for
to a Hagedorn transition, however, we want the derivative ot (and its associated exponen} for similar reasons, which,
(lioop With respect to a temperatui@e., any smooth re- in an intuitive fashion, one might simply sum up as follows:
parametrization of the biasuch that a proper definition of The smaller the modulus of the critical exponent, the closer
the susceptibility as the energy cost per loop associated witbne can go towards the critical point without “feeling”
decreasingn would simply diverge with an exponent finite-size effects.
(—y—1) [from (l,oop*(7—75*) "7 and the “energy cost” In Fig. 17 we present the values of the critical string den-
per loop associated with decreasing the bias becomesity as a function of the discretization of 1. It can be seen

which gives(as well asy*=0.277+0.004)

2
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FIG. 17. Critical string densityin units of string segments per

tetrahedrop plotted against the number of discretization points for /G- 18. Testing the validity of Eq(5) on a U1) string en-

the ul) manifold. semble withN=63.

thatN=15 is already very close to the continuouglJimit. p(0)=p(1)=p(2)= %

In this sense, the ensembles wiXlz=31 in Table VII can be

interpreted as the same measurements over several en-

sembles of the same kind. p(3)=p(4)=p(5)= ﬁ
Finally, it is worthwhile testing the validity of the scaling 6 ’

relation for configurational exponerit&q. (5)], which, as we

have discussed before, implies that on intermediate scalesich that{=1 corresponds t@y,=0, (=0 is a perfect
loops show the same fractal behavior as infinite strings. ScalRP? symmetry, andZ=—1 is a perfect (1) [if all the
ing seems to hold roughly. Considering that the expothent vacuum values live on the equator, we have the symmetry
is usually taken from quite noisy dataxcept when close to U(1)/Z,, which is homeomorphic to (1) and produces ex-
the percolation thresholdthe agreement seems very good actly the same results as the minimally discretizéd)\én-
and is shown in Fig. 18 for thel=63 ensemble. Wheais  semble$ For the continuousiP? simulations, we define a
constrained to be zero, as it was done to obtain Fig. 18, sudhias x such that the normalized probability density for the
plots give a very good first estimate of the percolationpolar anglefe[0,7/2) (i.e., constrained to the upper half
threshold and the Fisher exponemti.e., the value ob at  sphergis

criticality, which plays a prominent role in Sec. V, when we

will come to use the partition function to describe general o oS
scaling relations. dp(0)=T—gwe “"sinddo. (13

The unbiased case corresponds agaip 0, butx can run

from — oo to oo, where it corresponds to zero string density or
For RP? strings our conventions of what the bias meansa U(1)/Z, symmetry, respectively.

depend on the discretization. For the minimally discretized Apart from the critical exponents, the interesting feature

RP? strings(cf. Fig. 5, we define a biag as about biasediP? symmetries is that one can bias them to-

B. RP? strings

TABLE VII. Critical exponents and percolation thresholds for different discretizations (@j. Ohe
values quoted for™ are taken from the measurementyofin the case of the very low, the divergences for
loop sizes flatten out long before the critical point and no exponents can be extracted. For very,large
however, the number of traced strings is not large enough to extrdtte errors quoted are statistical errors
only. NA denotes “not available.”

N A n* o Y W B

3 50 000 0.2720.005 0.46:0.02 1.59-0.10 3.79-0.14 0.54-0.10
7 50 000 0.29920.005 0.44£0.02 1.770.14 3.85-0.16 0.45-0.07
15 50 000 0.295%0.007 0.3%0.04 1.86-0.13 4.5-0.3 0.39-0.06
31 50 000 0.30%0.005 0.42:0.02 1.75-0.03 4.1-0.3 0.45-0.06
63 50000  0.3020.005  0.41%0.017 1.6%0.07 4.0:0.2 0.50-0.07
127 50000  0.30£0.004  0.41%0.013 1.8@:0.06  4.07%0.14 0.410.05
255 2000 0.3320.005 NA NA NA

255 16 0.300+0.002 NA 1.83:0.07 4.16:0.15 0.456-0.025
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FIG. 19. Running of the fractal dimension. At zero bias we FIG. 20. Loop size distribution for negatiye only. It allows a
measurd = 1.96, whereas for large positive bias thélymeasure-  very good estimate of the position pf*.
ments are recovered asymptotically. As we approach the zero-
density limit (large negativew), the fractal dimension increases wise dot products, as defined in Sec. Il C. Then we take
sharply before becoming ill defined. The ensemble has 3000 stringggainpx: Protal Neo /Nigta) , WhereN with a subscript stands
with A=10". simply for the total number of appropriate strings in the en-

. semble. The results of this integration are plotted in Fig. 21,
wards the W1) ensembles, which we have measured alreadysogether with the mass density in loops and infinite strings.

The fractal dimension then runs from what we have mea- it can be seen that the loop density is considerably lower

19. i i . i . strings asu— and making up the total string density be-
If this effect is caused by the running of the string density,yond the percolation threshold. There are some statistical

as comparisons of the relative densities seem to SUfESt  errors attached to the lines indicating the loop and infinite

average number of penetrated triangles in continuod$ ¥ string density, as the ensemble of Fig. 21 consists of only

4, Whereas for continuouP* it is 1/7 [25]], our case for 3000 strings A =100 000.

arguing that the string statistics quite generally depend on the From the infinite string density we measure

string density in a way opposed to the tendency polymers

show gets further support from this picture. Vachaspati's 5=0.40+0.03.

model itself would be the obvious testing ground for such a

hypothesigthe penetration probability per plaquettezishe A comprehensive table of measurements can be found in

highest known in any model so farbut unfortunately he taple vIII.

quotes measurements neither nor forb at zero bias and | et ys now return to a question raised earlier: Is the string

his plots have too large statistical fluctuations to extrapolatgjensity the fundamental parameter, dictatigandb? Fig-
towards zero bias. A more detailed analysis of this is given,.e 22 shows that this cannot be the case. There we plot the

in Fig. 22. density vs. the fractal dimension. Most of the density regime

Let us now turn to the measurements of the critical exposg reached twice, once for negatigeand once for positive
nents. The average loop size has a very distinct peak at the

critical point, immediately allowing a rough estimate of the

critical bias atu*= —1.875+0.025. This is displayed in Fig. 040
20.\/Vhen we measurey, we get the best fits for total
u*=—1.86+0.01 and 030
y=1.70+0.06, &
seemingly in very good agreement with th€ldata. Also § 0%

=3.83+0.14, 0=0.435-0.013.

0.10 |

To obtain{p..), we first calculatepy with a Monte Carlo
integration

0.00
-5.0

pour= | [ [ 401d0,005n00p@p(05)

) /2 _ ) FIG. 21. Density of string segments in the continudR? en-
where [d() stands forf3"d¢ [y “d6, p is defined by Eq. sembles as a function of bias. The density in loops is shown as the
(13), andn is the string flux as a function of the three pair- dot-dashed line and the density in infinite strings is the dashed line.
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TABLE VIIl. Summary of all the measured critical exponents, compared with critical exponents in
three-dimensional sitéor bond percolation.

Percolation Minimally Continuous Discrete Continuous
Exponent theory discretized() u() RP? RP?
o 0.45 0.462) 0.422) 0.43513) 0.4013)
B 0.41 0.5410 0.453) 0.41(3) 0.344)
vy 1.80 1.5910) 1.776) 1.706) 1.6913)
W 4.04 3.7914) 4.1015) 3.8314) 3.7525)

. The fractal dimension, as we go towards the critical pointsity in loops and infinite strings, is shown in Fig. 23. All
diverges already for string densitieggherthan the densities components have qualitatively the same behavior as in the
we can achieve for positive, where the string ensemble just continuousRP? ensembles.

turns into a W1) set of Monte Carlo data. The fundamental From this we can conclude that, again, the discretization
lesson to learn from this is that, although spoiling the sym-of the vacuum manifold does not spoil the physical picture
metry may be the only way to change the string density inqualitatively. On sets of 10000 strings with= 25 000, we

our lattice description, it can sometimes be done in differentneasure that the percolation threshold is 4t

ways and lead to entirely different results. =0.425-0.004, 0=0.40£0.03, 8=0.34+0.04, y=1.68
For the minimal discretization diP? it is straightforward ~ +0.13, andiy=3.75+ 0.25.
but lengthy to derive What is somewhat unexpected is that for th@? en-
. ) 3 semble, violation of the “strict” scaling relation Eq5)
Proa= 18 [5—3¢"—2¢7]. seem to be apparent even in the regime of low bias. Where

the bias turns the symmetry into(1), the strict scaling re-
lation Eq.(5) seems to hold. For the other values, although
statistical fluctuations are recognizable, there seems to be a
consistent trend towards too large valuesbpwhich disap-
@ears again at the critical poiftf. the same discussion for

I

It can be seen that it has the right behavigg,—0 as

{—+1 and py— 5, Which is the value for the minimal
discretization of W1), as{— —1. It also has an extremum at
perfect symmetry/=0. This means that it shows all the

qualitative features of the bias dependence we observed ased W1) string. Perhaps the deviations seen fafdVin

. . 2 . . _ .
Flg.'21.for the cgr']tmuouRP .stnngs..Th'e success of d.'S Fig. 18 are also not just statistical errors. An analogous plot
cretizations ofR P“ in reproducing qualitatively the behavior for RP2 strings is shown in Fig. 24 for the discretized mani-
of the continuous manifold is quite striking: We have teStedfold and in Fia. 25 for the cont.inuous one
another icosahedral discretization, obtained by viewing a The obvim?é source to suspect would be a cutoff depen-
vertex of the icosahedron head-@uch that all the other five dence forb. However, this is not the case. We have changed
pomf[s are equatorial on)egAgaln, this reproduces the same pper and lower cutoffs for the loop distribution before fit-
qualitative curve for the bias dependence of the density an Ing it to Eq.(4), and the results do not change qualitatively:
turns exactly into a representation of tNe=5 discretization b stays re-cog'nizably larger than predicted by E8) '
of U(1) When biased towards equ_atorlal vacuum staeth Clearly, a better analysis of this violation of scale invariance,
the same string densjtyThe density, together with the den- even in the percolating regime, is needed. Here, however, we

will focus on the nonpercolating regime from now on.
2.60

X
towards |, u) RP2 cm-t
X y:! T T T
(u<0) 040
240 - x .
X
% § 030
D 5 total
2.20 U(I) XX E
x RP g e —
y \ 3 o020 - N
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2.00 X oxox N E b §4 _ .-~ infinite v
(u>0) 8o ' \\“;
=
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1.80 . . e loops !
0.24 0.26 0.28 0.30 0.32 e \
plo!al \‘
0.00 : ‘ :
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FIG. 22. Density of string segments in the continufi> en- €

sembles as a function of the total string density. The two ends of the
function differ distinctly for positive and negative values of the  FIG. 23. String densities of the discretizB&®? ensembles. The
bias. contributions from loops and infinite strings are shown separately.
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2.80

I i allows some fairly wide-ranging conclusions. For instance,
we can now, without having made the appropriate measure-
« ments, expect Vachaspati’'s model not only to be “nearly” a
260 | x x - bond percolation problem as far as the actual percolation
o o %o threshold is concerned, but it may also have critical expo-
o nents very close to the ones of bond percolation.
240 - x This is indeed somewhat surprising: From the point of
g % view of percolation theory, we have constructed a very awk-
o 1+3/D % ward definition of “clusters.” Not only are they topologi-
220 | xb 2 cally defined, but they are also definable through continuous,
& as well as discrete, manifolds of possible lattice states.
There is another comment to be made: From Table VIII,
| one could hypothesize that there may be a trend for higher-
" dimensional manifolds to deviate more strongly from perco-
lation data. However, Vachaspati's previously discussed
FIG. 24. The scaling relation Ed5) seems to be consistently mOd?I describes strings produced frorﬁzZ ground-state
violated, even in the low bias regime, except at the critical pointmameId' We have ShOYV” above that this model correspo_nds
and, perhaps, at a perfectl) symmetry. These are the ensembles closely to site .percolat|on, such that one expects especially
with the discretized?P? manifold. The loop statistics are not ex- the Vachaspati model to be close to ‘f" percolation problem.
tremely good, as the number of loops for zero Hias, where itis 1 herefore one would not expect the differences between the

2.00 | o
U) RP &,

¢

the lowest is ~1800. RP? data and standard percolation exponents to be a generic
consequence of the higher dimensionality of the manifold.
V. PERCOLATION THEORY, UNIVERSALITY, However, our measurements certainly do not seem to
AND POLYMERS compellingly suggest exact agreement of our critical expo-

nents with bond(or site percolation in three dimensions.

Nevertheless, the relative smallness of the deviations should
The most notable fact about the critical exponents wenake no difference when one tries to understand the possible

have measured in the preceding section is that not only dphysical relevance of the string statistics near the critical

they agree with each other, thus indicating universal behavpoint. Let us therefore try to learn more lessons from perco-

ior for string defects at the critical density, but they alsolation theory.

show reasonable agreement with the exponents obtained by

standard site or bond percolation. This fact has already been B. Fisher exponent and partition function

noticed for theN=3 discretization of 1) strings[28]. We

give a comparison of the measured exponents, includingO

their statistical errors, with known results from percolaﬂonnents (and that, therefore, we may extract more exponents

theor_y in Table Vill. . . than we have actually measujdibs been done already by
It is seen that the continuous symmetries show some ref%j

sonable correspondence with percolation data, whereas ﬂéeflnmg a partition function in E¢12), which we can view

minimally discretized 1) ensemble deviates more strongly. tssa? generating function for the loop size distribution, such
The RP? data have critical exponents that are consistently

slightly lower than the percolation theory exponents. This

A. Percolation theory and critical phenomena

The first step towards some indications that there are
me universal relations between the configurational expo-

<|{;op>=zl(—%)nz.

28 1 This partition function has the same functional form as the
. < one derived irf34] in the dilute free-string approximation. If
2e | X x x X | we want to return to a physical interpretation of the p.artitior_l
: » X<x><x><>®<><><x><><> x function, it is perhaps natural to expect some of the |ngr§d|—
X% XZ& ° o @ o ents of the results of Reff34] to enter the description. In this
24 | x * ] way, one is led to interprat as an effective string tension
s%<§ <b o, divided by a temperature, and the Hagedorn transition
. §§ o 1+3/D | occurs when the effective string tensitor the effective en-
' ¥ ergy per unit length of stringis zero. Another paper by the
same author$36] then provides the understanding for the
20 ™ = 00 mechanism by which the Hagedorn transition occurs in the

n case of biased symmetries: We have seen from the micro-
scopic details of the lattice description that, for biased sym-
FIG. 25. Same plot as in Fig. 24 for the continudt@? mani-  Mmetries, the strings tend to become more crumpled as they
fold. There are also large statistical errorshinas the number of wind around the sparsely spread lattice points with disfa-
loops is extremely small<500) at low bias. vored vacuum values. If86] it has been shown that for the
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reverse situation, when one tries to incorporate stiffness, the TABLE IX. Testing the scaling relations Eqgl5) and (16) by
effective string tension for fixed temperature behaves as comparing the values of the Fisher exponent predicted by them.

In[(1+2)e” Y] Minimally Continuous  Discrete  Continuous
Oeff= 0™ 103 ' T discretized W1) u(1) RP? RP?

whereu is the energy cost of turning a string through a right'g‘”2 2.256) 2.192) 2.182) 2.143)
angle and is the number of directions available to the string>~ 7¢ 2.218) 2.266) 2.285) 2.3311)
at every lattice point. From the details of the lattice descrip-4_ yo 2.2415) 22815 2331) 25029
tion (and also from an intuitive point of view in the con-

tinuum casg this energy cost becomes negative for strongly ution should scale: It is a strict consequence of the fact that

biased symmetries, as becomes immediately obvious if onE ) O
considers the limit in which the disfavored vacuum values g.(8) is satisfied so well by the data. The fact that oty

occupy only very small regions of space to understand thgrltlcal exponents can be independent is also a consequence

. ; . : f the existence of jusbne crossover length scale. This is
trend of negative energy cost assomatecj W'tE crumpllng th(giscussed in Refl.23]. The trouble with our definition of a
string, so that for some value of the biasy=0 will be

achieved and a Hagedomn transition occurs. However, thi enerating function is that it yields the loop length distribu-

N . ' o
correspondence is qualitative at best, since we do not de PN only for > »". What one s interested in for low bias is

with string dynamics. For this reason, the exporieii the e density in infinite strings. The critical exponents thereof
partition function for.example also di,ffers from the one ob—CannOt be extracted as straightforwardly as the other expo-

tained in[34] and the actual string tension right at the phasenents of the loop distribution, seeing tlﬁ(ag’of) would for-

transition is zero by definitior{(at least in the case of a mally correspond ol A prescription that is-generally work-
second-order phase transitioi more stringent proof that 2Ple in percolation theory is to argue that since
such a thermal interpretation of the partition function yields
nonsensical results is developed in Appendix C. Since “our” (oon) * i<| 0 p>
partition function describes the initial conditions for dynami- 100 g\ loop™
cal calculations, one should not view it as being more than
the generating function of the moments of the loop lengthwe can write
distribution.
If we know howb andc scale at the critical point, we can P =CONS{+ CONSK(l 50 C
derive the critical exponents for all the moments of the loop
length distribution. From Sec. IV A it is clear thhtdepends and therefore
only weakly on the bias, whereaxx scales as
cx|»—75*| 7. In agreement with the percolation theory lit- pooc|p— p?| (T
erature, we define=b(#%*) and will call it the Fisher expo-
nent. The critical exponents for the moments of the loopsuch that we have
distribution are then derived by

|—T+l —cl
2 e

=2~ 55|

Approximating the sum by an integral, we have

B=——. (16)

OCE | ~m+1+ng—cl o
|

This can also be made more precise by introducing a general
scaling function that is meant to describe both the long- and
short-range limits exactly. We chose not to introduce it here

(||f;mp>ocf |*T+1+ne*0'd|occ7*2*nf 72" 7e"2dz since we do not have enough data to extract such a scaling
function. One may wonder why this gives the behavior for
x| p— | (T2l (14) infinite strings rather than the total mass density or the loop

mass density. To answer this, one can just remind oneself
where we have approximatdxdby the constant in the first  that we have extended arguments that hold only for loops at
step and usedx|»— %*|Y in the last step. The integral #>7". In this regime, gradually longer and longer loops
overz is just a numeric constant. Thus we find that the fol-dominate the loop size distribution such that if we extend the
lowing scaling relations should hold for our string en- arguments beyond the percolation threshold, it is only the
sembles: infinite strings that contribute to the moments of this distri-
bution. This can easily be seen by the fact that all moments
3—-7 4—7 (I and higher, if defined through the partition function, di-
Y=g Ve (15) verge in the whole percolating regime.

The scaling relation$15) and (16) seem to be very well
and so on for higher moments of the loop distribution. In thisobeyed by the critical exponents we measure and seem to
way, one can use two of the critical exponents as the fundagive a value ofr consistent with what we observe in Fig. 18
mental ones and derive the others from them. Note that, afteand consistent with each other. The different predictions of
the measurements of Sec. IV A, the partition function is nor, to make the scaling relations consistent with each other,
longer just amodelof how the moments of the loop distri- are listed in Table IX.
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C. Average loop size VI. OPEN QUESTIONS

Encouraged by this, we can go on to another cosmologi- A. Features generic to properties of the vacuum manifold

cally perhaps more relevant parameter, which is not directly o
measurable from our ensembles, since we did not record We have seen that, at perfect symmeRyp* strings and

string-string correlation functions. It is another correlation>C3) Strings tend to have lower fractal dimension and there-
length, call it x, that measures the average separation bel'€ higher values ob than the U1) strings. Within the high
tween two points on the same string. This gives a cleareptatistical errors and considering the extremely low value of
picture of the actual physical size of a collapsed string lump} used in[30], it is impossible to conclude with certainty

beyond the percolation transition. Define that there are significant differences in these parameters be-
tween RP? strings and S() strings, although the mean
z (2g(r) value ofD measured by Kibble for S@) strings is 1.95, i.e.,

- it is lower than forRP? strings. It would be worth investi-
=, gating whether the lower fractal dimension is generi¢jo
E g(r) strings, to non-Abelian strings, or indeed, as our hypothesis
r goes, to the higher string densities one achieves with these
symmetry groups. Having data for so few vacuum manifolds
whereg(r) is the probability of finding, at a distancefrom  only, this question remains unanswered at present.
the origin, a segment of string belonging to the same string Furthermore, the fraction of mass in string loops is lower
as the segment at the origin. If we call the average squareid SQO(3) strings (5% [30], to be compared with caution,
distance between two string segmeRfs we have to weigh since a cubic lattice was usedhan in RP? strings
it with the number of string segments in loops of given (=19%) or U(1) strings (~35%). The same questions as for

X2

length to obtain the same definition fgrin terms ofR?, the symmetry dependence Bf and b arise. Nevertheless,
the tendency to have fewer loops with increasing string den-
23 R|2n||2—fe—c| s@ty is apparent. Vachaspati's gra_pﬂ?ﬁlﬁ] for the loop den-
o= sity, when extrapolated to zero bias, are extremely close to
Znl“"7e zero.

One way of addressing this would be an approach similar
Thus, apart from numerical prefactorg, is the radius of to the one presented in Fig. 19, starting with a symmetry
those loops that give the main contribution(tp. Since we  manifold of high dimensions and transforming it smoothly
have already established that, at least close to the percolatidmo several different lower-dimensional symmetries. This is
threshold, Eq(5) is satisfied and loops have part in a properplanned for the future. Ideally, one would want some ana-
definition of the fractal dimension, we can substitutelytic arguments for why such a symmetry-group dependence
R;«s'® and the numerator scales, according to Etf), should occur, if it can be observed consistently for several
with a critical exponent (3 7+ 2/D)/o. The denominator is different vacuum manifolds.
just (I}, such that, for the longest loogse., the ones that A partial answer can, however, be given right now: Since

exhibit fractal behavior on intermediate scales Vachaspati's model is equivalent to 8®°~=S"/7, symme-
try, the sequence {U(1)=SY7Z,, RP2=S%Z, SO
x| =777, (3)=S%7,, ...S"I7,} has been probed to some extent,
and it seems that as we move along this series, the string
with density increasesvith the dimensionality of the vacuum

manifold. For continuous representations of the symmetry
group, the exact string densities have been calculated by Va-
p=— chaspati 25].

We now know that, at least among thé@N symmetries,
the lowest string density and lowest proportion of density in
whereD is now the fractal dimension at criticalifp~2.5.  infinite strings is probably achieved for a(l) symmetry.
We have thus a reasonably good understanding of how thiow let us remind ourselves that the smallest allowed string
statistics of stringy lumps changes as we approach the Hagsops(in lattice units of the dual lattigeon the tetrakaideka-
dorn transition. hedral lattice are probably shorter than on any other sensible

One interesting aspect of this may relate, for instance, toegular lattice and the fraction of string mass in loops for a
axion cosmology: It is known[37,3§ that the U(1}q fixed vacuum manifold is therefore likely to be higher on a
Peccei-Quinn symmetry arising in axion models may nevetetrakeidekahedral lattice than on any other one. We there-
have been a perfect symmetry. If this is the case, this mafore suspect that the measured proportion of infinite string
solve the domain wall problem arising in thermal axion sce-density for U1) strings is the lowest one can find on any
narios [i.e., scenarios with no inflation below the Peccei-regular lattice and for anjgPN vacuum manifold. It is cer-
Quinn scale where the Peccei-Quinn symmetry gl) tainly the lowest found to date in VV simulations at perfect
ariseg with color anomalyN>1. The network of axionic symmetry on a regular lattice. All vacuum manifolds, other
domain walls, arising at the QCD scale, bounded by axioni¢han U1), with nontrivial 7, have more dimensions than
strings, which formed at the Peccei-Quinn scale, may nevedd(1). If the dimensionality of the vacuum manifold turns out
have been an infinite domain wall network. This would solveto be the relevant parameter, the measured 63% fdy U
the domain wall problem in thermal axion scenarios. strings would actually be the lowest mass fraction of infinite
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strings forany vacuum manifold orany regular lattice, if volume average over the field value is sensible and, even if
measured with the VV algorithm. the description is chosen to be more or less coarse grained
However, when comparing these symmetry groups, evethan one correlation length per lattice spacing, we would get
at perfect symmetry, one observes that they just continue thine same scaling laws for any such lattice description at zero
trend one observes for spoiled symmetries when movindpias (p=3) or at maximum bias {=0,1, which are trivial
away from the percolation threshold: As the string densityfixed points, as no strings appear at all and the field is in its
increases, not only the loop density, but also the fractal ditrue ground stade
mension decreases. This seems to suggest that the total stringThis is comforting in itself, but clearly this renormaliza-
density may play a fundamental role in deciding the fractation does not preserve the features we have measured for
dimension of the strings, even in an unbiased symmetry. Wemall bias:p=3 is the only nontrivial fixed point, but is
are lacking an analytic argument for this hypothesis, and Figunstable @p’/dp>0 atp=13), which means thaany series
22 introduces the additional complication that biased symef coarse grainings will end up at a trivial fixed point if we
metries do not scale their string statistics the same way astart with any small bias. If this was a sensible discretization
unbiased ones do, although the trend of an increase in th&ocedure, we would have to conclude that large loop sizes
fractal dimension with decreasing density is maintained inare exponentially suppressed fany nonzero bias. This
either case. Group theory alone does not seem to tell muafenormalization procedure is clearly inappropriate when we
about where the strings go. Perhaps a renormalization-groupy to understand string percolation near the percolation
description, generalizable to different symmetries, would behreshold because,# 3. For p.<p< 3 the simple averaging
useful in shedding some light on this question. This brings usvill always produce a homogeneous background on large
to the next unsolved problem: We do not haa®y scales and therefore predict no infinite strings at all.
renormalization-group description that allows us to put in  For biases near the string percolation threshold, a mean-
(and conservethe string density as the fundamental param-ingful renormalization procedure would have to keep infor-
eter. mation on the percolation properties of the least likely
vacuum value. In that case, however, the obvious approach is
B. Renormalization-group arguments to take a standard percolation renormalization. This would
. , . mean we gain nothing that we do not know yet, as the best
Having observed that the scaling relation Ef) holds ._we could go to develgp some intuitive undergtanding of the
reasonably well through a whole range of values of the bias, " : .
agedorn transition on the lattice was to take percolation

we wou_ld liké to undarstand how this comes about SInCe[heory results, before we even started contemplating about
percolation theory does not really help us th@mecept when the renormalization group

close to the threshojdBecause we are dealing with a critical H . hat th lizati .
henomenon, one would hope that renormalization-group ar; owever, it turns out that the renormalization group in
P ! three-dimensional percolation is never exg&%| and needs

guments can shed light on this question. In this section W&ystematic improvement, so that the coarse graining does not
will mention the difficulties with such attempts and why we y P ' 9 9

R L reconnect disconnected clusters or disconnect connected
haye been unsuccessfldo fay in finding nontrivial fixed ones. On some level, this problem will always reappear.
p0||rtlts.is straightforward.  but tedious. to derive Therefore the systematic improvement does not yield an ex-

_ Straig ' . ’ ; . act renormalization group either. From Fig. 6 it is obvidas
renorma_hzatlon-group arguments, derived frqm RG lde_as Meast for Vachaspat'&P* mode) that such systematic im-
percola_tlon theo_ry,_ with vacuum field averagl@; least n provement would differ, depending on whether we want to
the Iattlc_:e description The technical parts of th!s appear in improve the renormalization group for a string description or
Appendn.( B. nge we just take the renormal|zat|o.n—groupf0r a bond percolation problem. This explains on a more
polynomial as given. Let us group the sites of a unit cell Offormal basis why the Vachaspati model is so close to a per-
the bcc lattice[i.e., a cell with spanning vectors (1,0,0),

(0,1,0), and £2.3)] into a single supersite such that the colation problem but not quite identical to it.

coarse-grained lattice is again a bcc lattice with twice th Clearly, finding a systematically improved renormaliza-
\rse-grair a9 g Sion description starting from a percolation picture would
lattice spacing of the original lattica’ =2a. If we take a

. ) . . enhance our analytic understanding of the Hagedorn transi-
U(1) symmetry discretized byls, at arbitrary biasy, such o 2nd associated critical exponents. Depending on how the
that the probabilities for the three vacuum values ar

e K . . .
p(0)=p and p(1)=p(2)=4(1—p), with a sensible renor- details of this procedure will turn out to work, it may then

lizati dure A dix B th lized also be possible to extend it to groups other t8&4r7, and
Egslzk?el(c:):m%?ce uresee Appendix € renormaiized o minimally discretized ), for which the percolation

theory picture was so effective.
105 315 63 175 35 It is not at all obvious what variables should be conserved
p’ =?p8— 55p" + TpG— 5 5— 5 p*+ > ps. in such a renormalization-group description. We have seen in
this section that preserving vacuum field averages alone is
not enough. Towards the end of Appendix B we show that

The fixed points are the solutions fB(p)=p and are, as preserving the string flux alone is not enough either.
expected, at 03, and 1. Because the renormalization proce-

dure in Appendix B was chosen such that the field values
over the group of sites are averaged in some sensible way,
this means that the interpretation of the vacuum values, ex- We have investigated how generally known concepts of
isting at the sites of the tetrahedral lattice, as a horizonstatistics of topological line defects are affected if a

CONCLUSION
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symmetry-breaking phase transition occurs in such a fashiofequivalent to our three-point triangulation of1)].

that the remaining symmetry in the manifold of possible The simulations presented here model the initial condi-
ground states is only approximate. Such a concept has bedions of condensed-matter systems with a nonconserved or-
familiar as a solution to the domain wall problem. There itder parameter after a rapid quench. Dynamical simulations
leads naturally to a percolation theory understanding of debave been performed on systems where the nonconserved
fect statistics because the sets of possible ground states &&ler parameter is a complex scalar fiefd both with
disconnected. So far this concept has not been worked odt?) =0 (corresponding to zero biaand(¢)#0 [39]. It is
properly for continuous symmetries, mainly perhaps becaustound that the introduction of a bias in the initial expectation

the naive correspondence with standard percolation theory2/Ue Of the order parameter results in the eventual departure
breaks down for continuous symmetries. rom dynamical scaling, with the density of the string net-

Out of the variety of possible defects exhibited by non-WOrk going as
simply-connected continuous vacuum manifolds, we con- () ~t~lexg —gt¥?)
cerned ourselves in this work with string defects in both P 9t

perfect and approximate symmetries. With improvements ifyhere g depends approximately quadratically on the initial
our algorithm, explained in detail in Reff7] and based on ias( 4. This is due to the network breaking up into isolated
the methods of Ref[6], we have been able to go much 5505 'with an exponentially suppressed size distribution.
further with the measurements presented here and are able\iphen we published Ref6], it was not clear whether this is
provide answers to a number of important questions. due to the initial conditions possessing no infinite string or
(i) Is the fractal dimension of infinite strings precisely 27 hether the infinite string somehow manages to chop itself
For infinite strings in the W) models the answer, summa- ; into an infinite number of loops. If it had been the former,
rized in Table I, is "yes,” within the statistical errors of e percolation transition would have to happen at very small
about 0.8%(to reach th|§ accuracy we have used a S'mpleoias, perhaps even &) =0, for the departure from power-
extrapolation to cope with finite-size effegtdt should be law scaling inp(t) was observed from rather small biases,
noted, however, that this is the infinite-length limit of a run- 45 to($)=0.001. Having extended the work of R&6]
ning effective fractal dimensioticompare Ref[28]). For 1 5 petter statistics(b) much larger upper cutoff lengths,
strings in theRP~ models(see Table Y the answer appears (c) one more symmetry group, arid) continuous represen-

to be “no™ we have good evidence from ”;e low-cutoff {ations of the ground-state manifold, we have now ascer-
high-statisitics simulations of the continuoi®“ manifold  ained that this is not the case. The existence of infinite

that the fractal dimension is slightly lower than 2. More evi- strings holds for a range of biased initial conditions.

dence is displayed in Fig.2 19, which shows that the fractal ' gy the example of string defects, this work has provided
dimension of discretized P strings is less than that of)  some intuitive, as well as some quantitative understanding of
strings. . . L , how defects in systems with continuous symmetries are af-
(i) Are strings scale invariant in the percolating phase%ected by a lifting of the degeneracy of the possible ground

Scale invariance in our sense means that the loop size distiiiaies. Since these effects also change the late-time dynamics
bution follows Eq.(2) and that Eq(5) is satisfied. Figure 18 4 systems with nonconserved order parameter, the hope is
shows that the assumption of scale invariance is consistega¢ ynderstanding the initial conditions carries us one step
with our measurements for (U) strings. However, the evi- frther in understanding these dynamics. It should also pro-

2 . . - . .
dence forRP“ strings in Figs. 24 and 25 is against scaleyjge some incentive to study other defects under similar con-
invariance, except at the percolation transition. In both casegyitions. in theory and in the laboratory.

the fractal dimension increases as the string density de-
creases: The string gets more crumpled. This is implicit in
Vachaspati's resultg25].

(iii) Are the critical exponents of the string percolation K.S. is supported by PPARC Grant No. GR/K94836 and
transition universal? We have investigated several differeni1.H. by PPARC Grant No. B/93/AF/1642. Further support
representations of two vacuum manifoldélyandRP?, and s provided by PPARC Grant No. GR/K55967, by the Euro-
for these models at least we have found good evidence, sunpean Commission under the Human Capital and Mobility
marized in Table VIII, that the answer is “yes.” Further- programme, Contract No. CHRX-CT94-0423, and by a
more, the critical exponents are those of three-dimensionakoyal Society Research grant. The authors would like to
site or bond percolation. thank Julian Borril, Mark Bradley, Ray Rivers, James Rob-

Our claims of universality are aided by the construction ofinson, and Andy Yates for their comments and discussions.
a two-parameter generating function for the loop size distri-
bution, which has some of the qualitites of a partition func-  AppENDIX A: FAILURE OF THE DODECAHEDRAL
tion (but no thermal intepretationThe existence of such a DISCRETIZATION OF RP2
distribution implies that certain scaling relations character-
sitic of universality should be satisfied, as indeed they are Here we will prove that a discretization P2 achieved
(Table IX). by using only those points that are the vertices of a dodeca-

Our results extend the work of Bradley al.[28] on tri-  hedron(DH) embedded into the sphere does not force self-
chord percolation, who first noted the correspondence of thavoidance of the resulting string defects. Let us take the up-
critical exponents with that of site percolation. With our va- per half of the dodecahedron, with its vertices numbered
riety of models of the manifolds, we provide evidence thataccording to Fig. 26.
the correspondence is not confined to their three-color model Not all the point pairs are directly linked to each other,
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TABLE X. Configurations of the eight sites grouped together to
a supersite, which yield a vacuum value of 0 for the supersite,
together with their respective probabilities, according to @@). It
is assumed tha#b and neither is equal to 0.

Field values Number of

(+permutations permutations Probability

(0,0,0,0,0,0,0.0 1 p?

(0,0,0,0,0,0,0)n 8x2 L(1-p

de
(0,0,0,0,0,0,a)a 27x2 /1P
FIG. 26. Convention for the numbering of the vertices of the p ( 2 )

dodecahedron in Appendix A. Points lying on the lower half sphere
are drawn as dotted circles. The projections of the points 1-5 to th€9,0,0,0,0,0,1,2 56 o 1PV
lower half sphere are not drawn, but all their links can be seen here. P 2
but all are at most two links apart. There are no ambiguitie$0.0.0,0,0,a,a)a 56x2 5[1-p\®
in applying the geodesic rule because no pairs can be con- Pl
nected in more than one way, if we only allow connection
lengths of up to two links. For any assignment of such a0.0.0.0.0.aab 168x2 5(1—p)3
restricted selection of elements BP? to the vertices of a P2
triangle, we can therefore identify uniquely whether the tri- A
angle is penetrated by a string or not. This is equivalent téo'o’o’o’l'l'l’)l 70 p4(1_P)
the statement that we could use the same flux definition as 2
before because none (_)f the projections to the upper halB'O’O,O’a,a’a)b 280% 2 1-p*
sphere of vectors pointing to the vertices of the DH are at p4(_)
right angles to each other. This correspondence will make 2
the proof easier because we can just check whether a give§ 9.0,0,1,1,22 420 1-p)4
shortest path between two points crosses the equator an p* —
assign it a value of- 1 if it does or 1 otherwise. The product
of all links will then indicate whether there is a string present(0,0,0,1,1,1,2,p 560 1-p\5
in a triangle(if the product is negativeor not. Now let us pa(T)

take, e.g., the assignments 2, 5, 8, and 9 for the respective
vacuum fields on the vertices of a tetrahedron. Then the links
have the following “equator-crossing indicators” assigned

to them: assigned to the supersite. In case of ambiguities, i.e., if two
values occur three times each or four times each, we take the

(25—+1, smaller value(for consistency, this means<Ql, 1<2, and
(28)—+1 2<0 to preserve the periodicity of the cirgld_et us define
' the respective probabilities for the vacuum field values as
(29— —1, 1-p
591 pO)=p, P(1)=p(2)="—%5" (B1)
— L
(59— +1 The possible configurations yielding, for the supersite, a field
' value of zero, then have respective probabilities as listed in
(89— +1 Table X.

This gives, for the probability of the renormalized super-

Since the two links that have 1 assigned to them are dis- Sit¢ t0 have a zero vacuum field,

connected, all triangles border exactly one of the two links

r_ —n8 71— 6(1—_n)2 501 _1n)3
and all the link-variable products are negative. There arep P(p)=p~+8p'(1~p)+28p7(1~p)"+56p°(1~p)

therefore four string segments entering the tetrahedrdl.
959 J +EEph(L-p)*+ $p(1-p)°
APPENDIX B: RENORMALIZATION GROUPS = %pg_ 55p7+ 3Tl5p6_ %’p5_ %5p4+ 3?5p3.

1. Vacuum field averaging (B2)

Let us group the eight points of the bcc lattice cells The polynomialP(p)—p is plotted in Fig. 27. The zeros of
spanned by the vectors (1,0,0), (0,1,0), ahg,§) such that this plot correspond to fixed points. Fixed points outside the
the most frequently occurring vacuum value will be the valuerange[0,1] have no interpretation in terms of probabilities.
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- + -

FIG. 28. Renormalization procedure for a grouping such that the
coarse-grained lattice spacing is twice the spacing on the original
lattice. The assignments to the links inside the finer lattice is irrel-
evant to the total string flux. Changing any of the outer links of the
fine lattice changes the string flux and changes one of the links of
the coarse-grained lattice, changing the string flux also in the renor-
malized description.

P(p)-p

p
[n/2]
FIG. 27. Renormalization polynomi&(p)—p of Eq. (18). p'= 2 [( k) p”_k(l— p)k}
k=0
We see that the only physical fixed points are a},tGand 1. 1 n
They are all expected, as discussed in Sec. VIB. What is not - §5z[n/21,n( /2 p"2(1—p)"2.

discussed there is that the stability of the fixed points is
determined by the sign oflp’/dp=dP/dp at the fixed
points. As expected again, the fixed points 0 and 1 are th&he brackefn/2] denotes the largest integer not larger than
only stable ones, so that this renormalization procedur&/2 such that the term containing the Kroneckecorrects
would get rid of all infinite strings for anp+ 3, which is  for the double counting of symmetric termsrif is even.
clearly different from our measurements. A renormalizationAgdain, the only physical fixed points for all of these polyno-
procedure that merely performs field averages is thereforgnials (with n>2) are the trivial ones ap=0,3,1 and no
not sufficient to describe the Hagedorn transition in the ini-percolation threshold can be identified in this way.
tial conditions(but it may perhaps describe the disappear-
ance of infinite strings in the subsequent dynamical evolu- 2 Renormalizing the Vachaspati model with conserved flux
tion, as observed in Ref39)). i o
We stress that we have not been able to find any non- As the next obvious step, one could try a renor_ma_llzatlon
trivial fixed points for various generalizations of E48). It ~ Procedure that conserves string flux. Clearly, this is most
is straightforward to write down the renormalization polyno- €asily done fO%th”ngf’ th're ti‘e string flux can only be 0
mial for general groupings ai sites to a supersite by gen- OF 1 (or better, “even” or “odd"): If the first homotopy

eralizing the criteria leading to valid entries in Table X. ~ group of the vacuum manifold is, e.g., then the string flux
through multiply renormalized supersites can become arbi-

trarily large(if it is to be conservedsuch that in every renor-

p’=PM(p) malization step the lattice definition of the string flux would
| kni2 - have to change together with the probabilities of the relevant
-y n! nei-k| 1P parameters. As seen in all the models Zgrstrings]i.e., the
- 1520 ITkI(n—1—k)! P 2 Vachaspati model, our calculations f&P?, and the calcu-
2::;22'? lations of Kibble for S@3) strings[30]], this is essentially
done by identifying lattice links as having one of the two
1 1 1 values*=1 assigned to them and taking the product over a
x| 1= Ean—k—lvl_ §5n—k—|,k+ §5n,3| 5|,k)’ closed contour. The obvious approach is therefore to associ-

ate two consecutive links with a superlink and assigning to it

the product of the two link values. On any lattiGaubic or
which does not seem to have any physical fixed points othetletrahedral this preserves the string flux in the sense that the
than the trivial ones found with the polynomial in Ed.8).  string flux through a superplaquette is zéewer) if the sum
The Kroneckers's just divide out factors of 2 or 3, depend- of the string lines penetrating the constituent plaquettes is
ing on whether the most frequent vacuum phases are morven and oddone otherwise. The procedure is outlined in
than one, as, e.g., in the fourth to last and last row of Tabld~ig. 28.
X. We have tried the same approach for a minimally dis- The third dimension does not have to be drawn since the
cretized RP? symmetry where it is in fact much easier to renormalization procedures for differently oriented links are
write down the renormalization polynomial for the bias, butindependent from each othéhe second dimension is nec-
again all the fixed points are the trivial ones and the percoessary only to show how changes in the string flux survive
lation threshold cannot be located in this way. For completethe renormalization procedyrd_et us define the probability
ness, the easily derivable renormalization polynomial, ifof finding a link with value +1 by p,=p such that
p(0)=p(1)=p(2)=p/3 and p(3)=p(4)=p(5)=(1—-p)/ p-=1-p. Naively, one expects that, as the size of the su-
3 and if we group a numbaen of sites to become a supersite perplaguettes increases with every renormalization step, the
of the renormalized lattice, becomes string flux for very large plaquettes is 0 or 1 with equal
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FIG. 29. Renormalization polynomial for orders 2—7. There is a clear tendency for the potential to flatten qmli:éeanaking the
speed of convergence towards the stable fixed qmm'% faster for largeN. There is no tendency for the emergence of any fixed points
other than Q(for odd polynomials only % and 1. The dotted line is the ling=p. The intersections define the fixed points.

probability, irrespective of the initial bias, as long as theentire nonrenormalized lattice consists of links with. (i.e.,
average number of expectéaonrenormalized— 1 links on  p=0), the renormalized lattice will consist entirely of links
the edge of the superplaguette is much greater than 1, i.e., fwith +1 such thatp=0 is not a fixed point. Furthermore,
any nontrivial bias. The probabilities to havel or +1  dp’/dp=4p—2 such thatp=1 is an unstable fixed point.
assigned to a link converge towargds=p, =3, i.e.,p, = p=3 is a stable fixed point and is approached exponentially
1, should be a stable fixed point. This is exactly what hapfast for any sequence of renormalization steps. This fast ap-
pens.p’ consists of two contributions: both links of the non- Proach is also understandable: As soon as the probability of
renormalized lattice have to have the same value assigned fgving a value of-1 on any of the original links spanned by

them in order to make the superlink carry the valud. & superlink becomes appreciable, the probabilities of having
Therefore either +1 or —1 assigned to the superlink are very nearly

equal. The probability of encountering-al link approaches
p’=p?+(1-p)> 1 exponentially with the sizé of the superlink as % p'.
This procedure cannot be refined by combining more than
It is easy to see that the only fixed points drand 1: If the  two links to a superlink in the next step since the arguments
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leading to the stable fixed poipt= 3 stay valid for any such If we define a probability density that a given string seg-
renormalization. This has been tested up to coarse grainingeent belongs to a loop in the length intery&]l +dl] by
by factors of 7. The renormalization polynomial in any of P(I)« (I dn/dl), we can define an information entropy, con-

these coarse-graining procedureg(ifsthe lattice is coarse tained in the probability distribution function by
grained by a factor oN)

K=N/2 N S:‘El P(H)InP(I).
p'=Py(p)= IZO (Nmod 2+2k) pN~2K(1—p)3,

We can, for instance, try to relate the average length of string
loops to an average energy of a thermal ensemble. It would

for which it is trivially true thatp=1 is a fixed point. Using :
then make sense to define a temperatues

n n
1+(2)+(4>+---=2“‘1, 1_95
0 &)
n n n and see how the system behaves under changes of the bias.
( 1) n ( 3) n ( 5) 4o.=on-1 In Ref.[6] we did not have good enough statistics to extract
that parameter, but with the partition function we do not need

to get involved with the numerically highly unstable division

it is easy to see thgi=1 is also a fixed point for all of these of two differentials because, without normalization,
renormalization procedures. Also, for odd numbersNof
p=0 is a fixed point, as one expectan odd number of P(l)=I"""te ¢
—1 links gets renormalized to a1 superlink. We have
testedPy(p) for values up tdN=7, and the mentioned fixed The entropy can then be split into two parts
points are really the only solutions & (p)=p for all of
these. Furthermore, the speed of divergenc® gfp) out-
side the interval 0,1] tends to increase, so that it seems that
the physical fixed points are in fact the only real ones and all
other solutions td®y(p) =p are complex numbers. Surely it
should be possible to find a rigorous proof for this statementy, -
from the general form oPy(p), but instead we refer to Fig.
29, which seems to suggest very strongly a tendency for the
Pn(p) not to develop any other physical fixed points as we Szocc<l|oop>o<cT‘2.
increaseN.

What this means is that the renormalization procedures  py partial integration, behaves as
proposed here is also inappropriate for telling us about the
scaling of the string network, as all it tells us is that through
very large surfacegon superhorizon scalgshe probability —r+1g—cl =2 _
of finding aZ,-string flux 1 is3. In particular, it does not Slocf In(H! e “dlxc™ " cons —consginc].
enable us to locate a string percolation threshold. Summariz-
ing both sections of this appendix, the question of how toThys, with
formulate a renormalization-group transformation that iden-
tifies the Hagedorn transition point as a fixed point remains (r-2-0)la
unanswered, as does the question of which variables one dS=(An) [1+constiny]d(A7)
should preserve in such a transformation.

S= —Zl |~ e % [(— 7+ 1)Inl —cl]=S,+S,.

and

APPENDIX C: COMPARISON ~3-0)lo
d{l An) 737 9od(Ap),
TO THERMAL QUANTITIES {lioop (A7) (A7)

In Ref. [6] we attempted to extract a statistical tempera-we obtain
ture definition from the probability distribution of strings.
This can of course be done only by analogy to statistical-
mechanics arguments. It will turn out that the temperature
thus obtained is meaningless in physical terms and we arrive
at a circular argument, giving us thashould be interpreted and the thus obtained temperature diverges, up to logarithmic
as an inverse temperature, which is not the case, as we arorrections, as &/ and the Hagedorn transition happens at
gued before. Thus comparisons with thermal ensembles anfinite 6. Thus the correspondence of our partition function
thermal partition functions are not appropriate. with a thermal one does not hold. |

6 (A7)~ Y[ 1+ consting]
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