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Universality and critical phenomena in string defect statistics

Karl Strobl and Mark Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QH, United Kingdom

~Received 19 August 1996!

The idea of biased symmetries to avoid or alleviate cosmological problems caused by the appearance of
some topological defects is familiar in the context of domain walls, where the defect statistics lend themselves
naturally to a percolation theory description, and for cosmic strings, where the proportion of infinite strings can
be varied or disappear entirely depending on the bias in the symmetry. In this paper we measure the initial
configurational statistics of a network of string defects after a symmetry-breaking phase transition with initial
bias in the symmetry of the ground state. Using an improved algorithm, which is useful for a more general
class of self-interacting walks on an infinite lattice, we extend the work@in M. Hindmarsh and K. Strobl, Nucl.
Phys. B437, 471 ~1995!# to better statistics and a different ground-state manifold, namely,RP2, and explore
various different discretizations. Within the statistical errors, the critical exponents of the Hagedorn transition
are found to be quite possibly universal and identical to the critical exponents of three-dimensional bond or site
percolation. This improves our understanding of the percolation theory description of defect statistics after a
biased phase transition. We also find strong evidence that the existence of infinite strings in the Vachaspati-
Vilenkin algorithm @T. Vachaspati and A. Vilenkin, Phys. Rev. D30, 2036 ~1984!# is generic to all~string-
bearing! vacuum manifolds, all discretizations thereof, and all regular three-dimensional lattices.
@S1063-651X~97!02401-X#

PACS number~s!: 02.70.2c, 11.27.1d, 61.30.Jf, 61.72.Lk
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INTRODUCTION

Many symmetries in nature are not exact, including int
nal symmetries in field theories. A simple example of
approximate symmetry is a spin system in an external fi
e.g., a nematic liquid crystal with diamagnetic molecules@1#.
In particle physics, an example of an approximate symme
is the Peccei-Quinn symmetry U(1)PQ, associated with the
axionic degree of freedom, which has the degeneracy o
ground-state manifold lifted at the QCD scale.

Condensed-matter systems, as well as the vacuum in
early Universe, are, in the process of being cooled, subje
phase transitions. If these transitions are accompanied
symmetry breaking, they may lead to the formation of d
fects: domain walls, strings or vortices, monopoles, o
combination of these, depending on the topology of the se
equilibrium states after the phase transition. In cosmolo
such defects are associated with internal symmetries
field theory, while in condensed-matter systems there are
fects associated with the rotational symmetry of the grou
state. Such defects in a nematic liquid crystal are called
clinations@1#. Along a closed path around line disclination
the orientation of the molecules rotates by an anglep, while
in a point defect the molecules are in a radial point defec
‘‘hedgehog’’ configuration ~or a continuous deformation
thereof!, directed away from a central point. On the cent
points of the disclinations the molecules cannot have
alignment directions.

Topological defects form through what in cosmology
called the Kibble mechanism@2#: The simple requirement o
causality prevents regions of the Universe that are separ
by more than twice the horizon distance*0

t a(t8)dt8 from
being correlated. The actual correlation length can of cou
be much smaller. It is this lack of correlation that allows t
initial conditions to trap topological defects after phase tr
551063-651X/97/55~1!/1120~30!/$10.00
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sitions. Defects are also a convenient and compelling wa
seed large-scale structure formation in the early Universe
crucial ingredient for the usual string-seeded structure form
tion scenario is that the string configurations develop a s
ing solution @3,4#, which in turn seems to depend on th
initial scale invariance of the network. The presence or
sence of infinite strings~or, in a closed universe, of string
that wrap around it! also seems to affect the string density
the scaling solution@5#. Moreover, the question whether an
respectable fraction of the string mass ought to be in infin
strings is still controversial and far from being decidable
analytical means: The usual Vachaspati-Vilenkin algorith
yields lattice-dependent results for this fraction, which c
be attributed to the assumption of an unphysical latti
dependent lower cutoff in the loop length distribution@6,7#.
It has been claimed that a complete absence of infi
strings can be achieved by similar algorithms on generali
graphs, corresponding to an irregular discretization of
lowed string positions, obtained through modeling the co
sions of true vacuum-phase bubbles after a first-order ph
transition @8#. However, the reason for the very small fra
tion of infinite strings in@8# has not yet been identified, an
various proposals are on the market@9,10#.

What is desired for strings is a cosmological disaster
domain walls: Infinite walls would come to dominate th
expansion very quickly, which is incompatible with strong
bounds from the cosmic microwave background@11#. A con-
venient way to escape this problem has been to make
symmetry between the disjoint~sets of! vacuum states an
approximate one@12,13#. In particle physics such adjust
ments are possible and in fact necessary, for instance, w
attempts to explain the family hierarchy@14#. Similar biases
in other symmetries can affect the configurational statis
for all kinds of topological defects. Attempts to circumve
the monopole problem by allowing monopoles to annihila
with antimonopoles at a sufficient rate~facilitated through an
acclaimed tendency for the two to accompany each oth!
1120 © 1997 The American Physical Society
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55 1121UNIVERSALITY AND CRITICAL PHENOMENA IN . . .
have been made@15#; however, effects that soft symmetr
breaking might have to facilitate the monopole antimonop
correlations to a higher degree have not been considere
this paper we will not address monopoles, but attemp
establish such a description in the case of cosmic strings
topological line defects in solids, i.e., for softly spoiled sym
metries with a nontrivial first homotopy group. The technic
details of the lattice algorithm and the proof that it conser
~in most cases! the essential invariants of the continuu
theory are presented in a separate paper@16#.

In @6# it was pointed out that the existence of infini
strings may be understood as a percolation phenomenon
the associated critical behavior can be observed at a tra
tion into a phase where the string network exhibits o
loops. In this paper we show that this is indeed a percola
transition and can only be obtained, once the vacuum m
fold and the discretization thereof and of space-time are c
sen, by biasing the symmetry of the ground state. Althou
still no proof is available, we find strong evidence that t
existence of infinite strings in the Vachaspati-Vilenkin alg
rithm at perfect vacuum symmetries is generic to all vacu
manifolds, all discretizations thereof, and all regular thr
dimensional lattices.

We also find that the critical exponents for configuration
parameters near the percolation threshold are universa
different vacuum manifolds and identical~to within our sta-
tistical errors! to the corresponding critical exponents
standard bond or site percolation theory. For the case o
RP` symmetry and a minimally discretized U~1! symmetry,
plausibility arguments for this correspondence are brou
forward.

Section I introduces the well-known scaling concept a
methods to make it break down through a bias in the vacu
symmetry. There, and in Sec. II, we point out some asp
of the scaling concept, which, to our knowledge, have
been mentioned in the existing literature on the subject
particular, a clear distinction between the different manif
tations of scaling in the loop and the infinite-string ensem
is made and a correlation to scaling in percolation theor
illustrated. In Sec. II we show ways to control and estim
statistical errors and present results of measurements for
fect vacuum symmetries. Section III explains the theoret
basis on which one expects the percolation transition to
cur. Section IV presents results for this Hagedorn-like tr
sition at which the infinite strings start to appear~as one
decreases the bias in the symmetry!. We extract critical ex-
ponents associated, e.g., with the divergence of the ave
loop length, a suitably defined susceptibility, and a corre
tion length~for correlations in the string configurations, n
the vacuum field!. Compared to Ref.@6#, the accuracy of the
results is greatly improved, results for theRP2 symmetry are
different, and statistical errors are estimated. Section V
cusses issues of the universality of the critical exponents
a percolation theory understanding of the Hagedorn tra
tion is developed. A renormalization-group~RG! understand-
ing of the scaling concept is developed and problems w
the RG method in calculating the critical exponents are
dressed, as are cosmological implications.

I. FUNDAMENTALS OF STRING STATISTICS

A. Numerical methods

We will evaluate numerically the statistics of cosmic U~1!
strings~or, equivalently, vortices of superfluid4He! and of
e
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RP2 strings ~e.g., line disclinations in nematic liquid crys
tals!, in lattice-based simulations of the Kibble mechanis
The numerical method is presented in Ref.@16# and contains
perhaps essential improvements to the usual Vachas
Vilenkin ~VV ! algorithm@17#. The most important improve
ment in our calculations is that our lattice size is forma
infinite, i.e., we can avoid specifying any boundary con
tions, and can trace much longer strings with a given amo
of computer memory than was possible before. The VV
gorithm in general discretizes space such that the lat
spacing corresponds to the smallest physical length bey
which field values can be considered to be uncorrelated,
the lattice spacinga is of the order of, but perhaps slightl
larger than, the correlation lengthj of the field at the
symmetry-breaking phase transition, but certainly no lar
than the cosmological horizon. Details of the field dynam
are then inessential to the statistical properties of a la
ensemble of such lattices and vacuum field values are
signed randomly and independently at each space poin
create a Monte Carlo ensemble of field configurations on
lattice. It should be pointed out that the regular lattice we u
has been criticized, as it does not allow variations in the s
of correlated domains. In particular, some of the results
Borrill’s simulations @8# are rather different from ours, fo
reasons that are still poorly understood. However, they m
well suffer from important finite-size effects.

Line defects are then considered to have formed i
closed walk along lattice links maps, through the field m
onto a noncontractible loop on the vacuum manifold. T
assumption of a ‘‘geodesic rule’’@18,19# for the interpola-
tion of the field between the lattice points is not only int
itively acceptable, but in this formalism it is also essential
order to guarantee string flux conservation, an essential s
metry of the problem@16,7#. References@16,7# also prove
that only the dual lattice to the tetrakaidekahedral lattice
preserve a uniqueness in the identification of the paths
single strings and rotational symmetry of the Monte Ca
ensemble at the same time. This lattice has been used in
context in Refs.@6,7,20# and to study simulations of mono
poles and textures@15,21#.

B. Long-range correlations in topological defects

Strings are usually modeled by random walks, eith
Brownian or self-avoiding. As usual in the literature, we w
use the abbreviation SAW to mean self-avoidingrandom
walk ~there are obviously infinitely many ways of buildin
self-avoiding walks, each leading to possibly quite differe
statistics; straight walks, for example, are self-avoiding
obviously exhibit quite different statistics to SAWs in d
mensions higher than one!. A self-avoiding random walk
models an excluded-volume effect and is known to ap
well to polymers@1#. However, it is not clear that either kin
of walk represents the configurational statistics of cosm
strings or superfluid vortices, for there are long-range int
actions that could change the Hausdorff dimension. T
there are superhorizon correlations in the configurations
topological defects is not exactly new@15#. In the case of
cosmic strings it can be demonstrated by arriving at a sim
contradiction when assuming no long-range correlatio
Take a closed circular walk through three-space spann
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1122 55KARL STROBL AND MARK HINDMARSH
many correlation volumes. How many strings does one
pect to encircle with such a walk? Since there is a w
defined string density per correlation area, the numbe
encircled strings should increase proportionally with the a
A enclosed by the walk. If they are uncorrelated, the net fl
through this area will be partially canceled by strings of o
posite orientation and one expects an average net flu
aroundAA going through the loop formed by our walk. O
the other hand, the net flux is given also by seeing how o
the field winds around U~1! while one follows the walk. This
number, however, is expected to increase as the square
of the length of the walk, since the field values are uncor
lated on some length scale that is small compared to the
of the loop and many of the windings will cancel out. O
therefore has to conclude that, if the Kibble mechanism
responsible for the formation of strings~i.e., if thefield val-
uesare uncorrelated beyond some scale initially!, the string
network will have long-range correlation, favoring, for in
stance, flux cancellation for oriented strings on large s
faces. One should therefore expect deviations from Bro
ian behavior in the string statistics. This is also favor
because a cosmic string clearlyis self-avoiding: Because a
string is defined by the topology of the field map, it w
always follow the same way again, once it has turned b
onto itself. A cosmic string is therefore always forming
loop or has to be infinite and self-avoiding. This does n
mean, however, that the string’s configurational statistics
those of a self-avoidingrandomwalk, because the nature o
the self-avoidance is dictated by the field map. A SA
shows correlations only on very short scales~typically scales
of the lattice constant!. One of the reasons why strings als
cannot be randomly self-avoiding is that the field map car
the memory of the position of all the other strings, whi
cannot be crossed. We will show that neither a Brown
walk nor a random self-avoiding random walk models c
mic strings accurately and that the walk statistics depend
the vacuum manifold creating the strings.

C. Scaling hypothesis

A U~1! string in the Vachaspati-Vilenkin algorithm on
tetrahedral lattice is self-avoiding@7#, irrespective of the dis-
cretization~if any! of U~1! used in the algorithm. One migh
therefore expect the network of cosmic strings to have
statistical properties of a self-avoiding random walk. A SA
builds up an excluded volume as it follows its path, which
in a statistical sense, spherically symmetric and cluste
around the origin@22#. The SAW therefore has a strong
tendency to move away from the origin than the Brown
walk, which is allowed to intersect itself arbitrarily often
This property is expressed in the fractal dimensionD of the
walk, which is the exponent relating the average str
length l between two points on the same string to their re
tive distanceR by

l}^R&D, ~1!

where the angular brackets denote some averaging proce
over a large ensemble of walks. We show in another pa
that several different averaging procedures, in particular
ones of the kind
x-
-
of
a
x
-
of

n

oot
-
ze

is

r-
-
,

k

t
re

s

n
-
n

e

,
d

g
-

ure
er
e

^R&5 lim
N→`

SN21(
i51

N

uRnu D 1/n5~^uRnu&!1/n,

produce the same results for the fractal dimension, such
in particularl}^uRuD&}^uRu&D @23#. It is well known that the
dimension for a Brownian walk isD52, and for a self-
avoiding random walk in three dimensions it
D51/n51/(0.587760.0006) ~see Ref.@24# and references
therein for a summary of different methods used to obt
that result!. However, the original string formation simula
tions @17,25# are consistent withD52. The reason for this
was seen in the fact that they simulated a dense string
work: A single string, as we trace out its path, experience
repulsion from all of the segments of other strings, which
not have any statistical bias towards the origin. Therefore
repulsion from the forbidden volume will also have no dire
tional bias. Thus the fractal dimension of the string cou
also be argued to be~close to! 2, although the string is self
avoiding. In polymer physics, this effect has been known
some time to occur in a dense solution of polymers@1#. In a
statistical sense, the network of cosmic strings was argue
be equivalent to a dense network of polymers@26#. A poly-
mer in a dilute solution will exhibit the configurational sta
tistics of a self-avoiding random walk, while in a dense s
lution of polymers, each one has the structure of a Brown
random walk. Thus, taking this lesson from polymer physi
one would expect the scaling of the string sizeR with length
l in the initial configuration of cosmic strings to correspo
to a SAW on scales smaller than the mean separation
tween different strings and to a Brownian walk on sca
larger than this. In the cosmic string case, however, the m
separation is of the order of the correlation length itse
which is the same as the lattice spacing. So we expect
bias towards a SAW to fall off with distance roughly as fa
as the lattice discretization errors, which makes this sh
distance effect immeasurable. We shall anticipate the res
of the following sections: the fractal dimension of a string
formation, in general, is not the same as for a Brown
walk. It is only for U~1! strings that measurements are co
sistent with the exact value of 2, in the extremely lon
distance limit ('105–106 lattice units!. Of the other strings
that have been measured, none have fractal dimens
higher than the U~1! strings, but all have distinctly large
D than the SAW.

As is customary, we can introduce the scaling hypothe
in order to estimate a few other properties of the string n
work. It states that, in terms of its statistical properties,
string network looks the same on all scales much larger t
the correlation length of the vacuum field. Scale invarianc
phenomenologically the same as the existence of a la
scale ~IR! renormalization-group fixed point. Howeve
renormalization-group arguments for topological objects
hard to find. To our knowledge, there exists no analytic wo
that would lend firm support to the scaling hypothesis.
fact, most analytic work gets intractable if the scaling h
pothesis is not put ina priori. One would expect a proof o
the scaling hypothesis to contain RG arguments. We w
develop percolation theoretical RG arguments in favor
this hypothesis in Appendix B. With the scaling hypothes
the expected distribution of closed loops can be derived@27#.
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From dimensional arguments, the number of closed lo
with size fromR toR1dR per unit volume can be written a

dn5 f SRj D dRR4 . ~2!

If the system is scale invariant, the distribution should
independent of the correlation lengthj and one expects

dn}R24dR. ~3!

The length distribution of loops for strings with a fract
dimension ofD is therefore

dn} l2bdl, ~4!

with

b5113/D ~5!

or, more generally, 11d/D, with d being the dimension o
the space that the walk is embedded in. It was origina
expected@17# that it follows from scale invariance that the
should be no infinite strings. This turned out not to be
case, since, as we will discuss in Sec. IIB, ensembles
infinite strings and ensembles of loops manifest scale inv
ance in entirely different ways, namely, in the validity of th
Eqs. ~1! and ~5!, respectively. Infinite strings can still loo
statistically the same on all scales much larger than the
tice spacing: A Brownian walk is scale invariant and ha
nonzero probability not to return to the origin ind.2 di-
mensions. The origin of the scale invariance of the str
network seems to be connected with the absence of lo
range correlations in the order parameter@17#. However,
scale invariance does not necessarily imply that the netw
is Brownian as originally stated. Strictly speaking, scale
variance holds when all the scaling properties of a netwo
such as Eqs.~1! and~4!, are power laws: Only power laws d
not change upon linear rescaling of the variables. In t
sense, scaling is satisfied whenever Eqs.~1! and ~4! hold.
However, to make scaling also work in spite of finite-si
effects prohibiting us from identifying the very long loop
Eq. ~5! is taken as the manifestation of scale invariance. T
is plausible: Equation~5! implies that loops exhibit~on
scales much larger than the lattice spacing but much sm
than the loop size! the same fractal dimension as infini
strings, so that on scales where one counts some numb
loops wrongly as infinite strings, the distinction between
two becomes unnecessary. In this sense, Eq.~5! is a more
stringent definition of scale invariance because it allows
to be ignorant about effects on scales that a particular ob
vation may not reach. If we defined scale invariance by so
omniscient observer that can distinguish loops even if t
exceed the observed scale in size, then there is no reaso
the exponents of the loop distribution to be in any relation
the exponents of the distribution in infinite strings. One,
course, does not needD52 in order to have a scale-fre
distribution of loop sizesR. It is important to note that, be
cause of Eqs.~1! and ~2!, although they are the criteria fo
scale invariance, there are some observables that are
scale invariant if they happen to be dependent on the
cutoff. An example of this is the fraction of string mass
s
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loops, as discussed in@6# and item~iii ! in Sec. II A. What-
ever numbers one gets for these quantities are probably
physical since there is no known algorithm~least of all VV-
type algorithms! that would tell us what the physical UV
cutoff on the loop size distribution Eq.~4! should look like.
Scale invariance can hold only in the limitl@j.

If D52, one would expect a linear relationship betwe
walk length and averageR2, which would then, if the prob-

ability distribution for ending up at a pointxW after l steps is
Gaussian, be interpretable as the averages2 of the distribu-
tion. All this is familiar from the Brownian walk, and mea
surements seem to indicate that, in the case of a U~1! sym-
metry, we are close to such statistics. Figure 1 presents
linear-linear graph ofR2 vs the walk lengthl , which can be
seen to be an almost perfectly linear relation. The meas
ments in Figs. 1 and 2 are made using a discretization
U~1! by three equidistant angles.@In a sloppy way, we could
say we discretize U~1! by Z3. This only is correct as far as
the allowed vacuum angles are concerned, but may be
leading since in an actualZ3 symmetry the lines that we
identify as geodesics on U~1! would be associated with a
finite vacuum energy, i.e. they would be crossing dom
walls. It is more correct to say that we triangulate t
vacuum manifold as well as space: in this case with th
vertices and three edges, joining adjacent points. This a
matically encodes the geodesic rule. This distinction see
trivial, but it allows an easier generalization to, e.g., discre
zations ofRPN).# Such measurements were made in@6# and
we complete results from there. In particular, we presen

FIG. 1. Relation between the average distance of a string
ment from the origin and the string length walked until arriving
this element. The upper line represents averages over the ‘‘infin
strings only~i.e., strings that survive up to the lengthL550 000
where this particular measurement was stopped!. The lower line
represents averages over the string loops and has high stati
errors on the long-loop end, because of the low number of loo
and even higher systematic errors, because the ratio of lo
wrongly counted as infinite to the correctly counted loops increa
The averages were taken over 10 000 strings, 6334 of which h
pened to be infinite. Only 54 loops survived up to length 10 000 a
only 10 to length 30 000. One sees that the relation forR2 vs l for
the infinite string part is almost perfectly linear, suggesting Brow
ian statistics. The vacuum manifold U~1! was discretized by three
equidistant angles.
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1124 55KARL STROBL AND MARK HINDMARSH
much better error analysis here. Results are represented
between the infinite-string part and the loop contributio
This is a procedure we will follow throughout this paper,
analogy to conventions in percolation theory, and we w
show that it is in fact necessary to do so.

II. RESULTS FOR PERFECT SYMMETRIES

A. Elimination and estimation of errors

Before we turn to the results, a few words of caution a
in order. Among those, we include an explanation of how
arrive at error estimates for the statistical error.

~i! Because of the nature of the Monte Carlo averagi
there are two big sources of error for very long loops~i.e.,
the longest ones permitted in the simulations!. We follow
every string until it hits a certain upper limit of the strin
length l<L or until it returns to the origin, whatever hap
pens first. If it does not return to the origin until we ha
reached the lengthL, it is counted towards the ‘‘infinite-
string’’ ensemble. This does not introduce too many pro
lems for the averaging over infinite strings~as long as there
are many! because of the nature of Eq.~3!, which ensures
that only very few of the strings surviving up to lengthL are
actually wrongly counted as infinite. For the loop distrib
tion, which has only very few strings in this regime, th
statistical errors are huge~in the end, usually just before w
reachl5L, we even ‘‘average’’ over one string only!, but
the systematic errors in this regime are equally bad beca
there is a finite number of strings thatshouldbe in the loop
distribution but are not identified as loops. This drives t
measuredR2 to zero at the length where the longest of t
correctly identified loops closes~compare the lower line in
Fig. 1!. Extraction of configurational exponents on the lo
distribution will therefore be defined through fitting appr
priate curves that approach the actual measurements as
totically in the intermediate-length regime only.

~ii ! A word of caution is also necessary for the sho
length limits. As seen, for example, in Fig. 2, scaling is n
satisfied in the short-walk-length regime. This is due to t
sources of error. First, there are obviously lattice discret
tion artifacts. Second, at small distances the exclud

FIG. 2. log-log plot of the ‘‘infinite string’’ contribution in Fig.
1. We see that the short-length limit has lattice discretization er
and that a true power law is approached only forl*30. The mea-
surements are listed in Table II.
plit
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volume effect~from the self-avoiding nature of the string! is
still turned on, with a directional bias away from the origi
Eventually, repulsion from all other pieces of string shou
even out with repulsion from pieces of the same string, w
no directional bias at all, but this happens only at some d
tance from the origin. We will allow for this source of erro
by cutting off the low-length regime at lengths between
and 1000 lattice units whenever we measure configuratio
exponents from the Monte Carlo ensembles. A cutoff of 20
usually sufficient for extracting the exponentsc andb in Eq.
~8!, while 500 is very good, and still perfectly practical, fo
extracting the fractal dimensionD on the infinite string part.
Which cutoff to choose is decided on a case by case basi
observing where a cutoff independent measurement ca
obtained.

~iii ! Frequently, we will not quote the fraction of the tot
string mass found in loops. Such numbers are meaning
unless there is a lower cutoff for loop lengths much larg
that one in units of correlation lengths~in which case one
gets very little mass in loops anyway!. This parameter is
lattice dependent@26#, even for simple Brownian random
walks or self-avoiding random walks. This is partly due
different coordination numbers of different lattices.~For ex-
ample, every vertex on the tetrakaidekahedral lattice is c
nected to four lattice links, while this number is six in th
simple cubic case. There are more possibilities for the str
to ‘‘stray’’ in the simple cubic case.! This is connected with
another lattice dependence of this number: The length of
lattice links in the tetrakaidekahedral case isaA2/4, with a
the edge length of the underlying bcc lattice, while the c
relation length is betweenaA3/2 anda ~since every link
borders three tetrakaidekahedra, we need to take all the
tances between those three as representatives of a corre
length; two pairs have the distanceaA3/2, while one pair is
separated bya). Henceforth, when we refer to ‘‘walk length
in lattice units’’ we mean in units ofaA2/4, which is the
edge length of the tetrakaidekahedral lattice. Since the sm
est allowed loops in both lattices consist of four links, t
tetrakaidekahedral lattice allows much smaller loops~in units
of correlation lengths! than the simple cubic lattice. Accord
ing to Eq. ~3!, we expect a large contribution to the tot
string mass to be in very small loops, so that on a tetraka
ekahedral lattice the total string mass in loops will be co
siderably higher than on the cubic lattice. The problem of
lattice dependence of the mass fraction in loops also refl
a lack of knowledge about the physics involved in the p
duction of small loops. Physically, one would expect
smooth cutoff for short loops, so that the very small lo
contribution in Eq.~3! gets gradually suppressed. We do n
know the form of this cutoff and we expect it to depend n
only on dynamical details of the Kibble mechanism but a
on thermal production mechanisms for string loops~which
should be relevant right at the phase transition temperat
but quickly become subdominant as the Universe cools
ther!. In any case, the physical relevance of knowing t
exact contribution to the total string mass in small loo
produced at a phase transition is highly questionable, as
disappear quickly in any case. This does not affect the ph
cal relevance of the other data we can extract fr
Vachaspati-Vilenkin-type measurements because the
loops and infinite strings are not transient.
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~iv! Finally, we need to explain how we arrived at th
values for the statistical error. To estimate, for instance,
statistical error percentage of the fractal dimensionD, mea-
sured for a total number ofNmeasuredstrings up to a length
L, we take, for example, ten sets ofN5Nmeasured/10 strings
and measure the variance of the result, then take ten se
N5Nmeasured/20 and ten sets ofN5Nmeasured/40 strings, and
so on. We then measure the variance of the results fo
those sets and, under the assumption that the error beh
like a power of the size of the string ensemble, we extra
late to an ensemble ofNmeasuredstrings. If all our measur-
ables were Gaussian random variables for any sample w
the ensemble, this power law would just bes21}AN, which
motivates this approach. Since configurational exponents
normally not distributed in a Gaussian distribution with
samples of the ensemble, we decided to allow a general
power law for the variance. We present this method by
example of a U~1! manifold discretized byN53 equidistant
vacuum angles. Figure 2, the log-log plot of^R2& vs l , has a
linear fit, suggesting

l50.232 R2.0212 ~N53!.

This was measured forNmeasured510 000 strings being al
lowed to reach the length 50 000 in lattice units~taking only
the ‘‘infinite’’ strings and using a lower cutoff of 500 lattic
units!. Similar measurements on several ensembles w
fewer strings yield the values in Table I.

On a log-log plot, the statistical variances may be fit
the expression

s'0.0146 ~N/Nmeasured!
20.383,

so that thes expected in our measurement can be taken to
'0.015, which is simply the intercept of the linear fit in th
log-log plot of the variance againstN/Nmeasured, as displayed
in Fig. 3.

B. Results for a perfect U„1… symmetry

We can now proceed to the presentation of the results.
a perfect U~1! symmetry, we have used a series of differe
discretizations of U~1!, each consisting ofN52n21 equidis-
tant angles. The range of such discretizations is fr
N53, the lowest possible number of points on U~1! to give
noncontractible contours, toN5255, a rather good approxi
mation to continuous symmetry, as we shall see from
asymptotic behavior of the measurables for largeN.

TABLE I. Statistical variances in measurements of the frac
dimension for ensembles of fewer and fewer strings. The statis
error for a large ensemble is the extrapolation of these values to
appropriate number of strings.

Number Number Average Standard
of strings of ensembles D deviation

1000 10 2.027 0.038
500 10 2.022 0.045
250 10 2.035 0.051
100 10 2.021 0.094
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1. Loops have no fractal dimension

The linear fit to Fig. 4, the log-log plot of̂R2& vs l ,
averaged over loops only, obviously requires some sens
upper cutoff much lower thanL, and to some extent an
measurement of the fractal dimension of the loop ensem
is cutoff dependent. Nevertheless, a fractal dimension
D52 is inconsistent with any part of Fig. 4, as is any frac
dimension measured for the infinite-string contribution
listed in Table II. A typical subset of this loop ensemb
reduced to loops withlP@10,1000#, givesD52.14, whereas
a typical infinite-string dimension for, say, strings wi
L550 000 isD52.02. The reason for both this discrepan
and the cutoff dependence of the loop dimension is simpl
understand. A single loop cannot be a fractal, but a sin
infinite string can be. As it turns out, the measurements al
a slightly stronger statement: Theaverageloop is not a frac-
tal, whereas theaverageinfinite string is. The reason for this
is simply the finite size of loops: A single infinite strin
approaches a scaling behavior asymptotically for large sc
with no upper length scale arising, whereas a loop ha

FIG. 3. Variances in Table I. Extrapolating of the linear fit
Nmeasuredyields an estimate for the statistical error in the origin
measurement, in this casesmeasured51021.831'0.015.

FIG. 4. log-log plot of the loop contribution in Fig. 1. Only th
short-loop regime can be deemed useful, because there are ver
long loops, making bad statistics. In addition to that, the countin
biased by the exclusion of all loops longer thanL or shorter than
any given length where the plot is read.
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1126 55KARL STROBL AND MARK HINDMARSH
cutoff through its finite size. A finite object has a we
defined fractal dimension only on scales much smaller t
the size of the object and much larger than the lattice sp
ing. This means that only very large loops will exhibit ‘‘sca
ing’’ and then only on a finite range of scales, which mak
the scaling concept rather risky to depend on as far as
fractal dimension of the loops is concerned. We will the
fore average over the infinite-string component of the str
ensemble only, whenever it comes to extracting a fractal
mension. Figure 4 also suffers from the problem that
averages are only taken over those loops that actually sur
up the given length. An ‘‘average loop’’ would simply not b
there anymore after we have walked the length, say,l510.

This does not invalidate Eqs.~3!–~6!, as these specifically
imply and require the finiteness of loops. We can sum this
in the following way: The scaling concept enters the lo
distribution through the distribution of loop sizes rather th
the average properties of a single loop, whereas the sca
properties of the infinite strings can be interpreted as pr
erties of the average infinite string.

There is another qualifying statement to be made: If
remind ourselves how Eq.~4! was derived from Eq.~3!, we
have used the fractal dimension~in the cases to follow, the
fractal dimension of the infinite-string ensemble! to derive
properties of the loop ensemble. This is justified only b
cause of a lower loop-size cutoff~in addition to the upper
one, which ensures that the averaging is not over too sm
an ensemble! employed in measuringb. By having an appro-
priate lower cutoff, we make sure that we use this frac
dimension only for loops long enough to exhibit a
intermediate-length scale on which fractal behavior can
approached, allowing us to use Eq.~1! in deriving ~4! from
~3!. The measurements do then indeed seem to indicate
with rather minor deviations, the intermediate-length regi
of a properly chosen long-loop ensemble looks like
infinite-string ensemble with an intermediate-range up
cutoff and the scaling relation Eq.~4! holds.

2. Infinite-string ensemble

Using linear fits to log-log plots ofR2 vs l , with the error
elimination and error estimation methods presented ab
we arrive at measurements for the fractal dimension

TABLE II. Fractal dimensions of an average string with diffe
ent, increasingly finer, discretizations of U~1!. The averages are
over infinite strings only. The lower cutoff isl5500 in all en-
sembles.

NumberN of Fractal Number String length
discretization dimension of cutoff
points onM D strings L

3 2.02160.015 10 000 50 000
7 2.02260.015 10 000 50 000
15 2.02260.015 10 000 50 000
31 2.02260.015 10 000 50 000
63 2.02560.015 10 000 50 000
127 2.01360.015 10 000 50 000
255 2.00760.025 3 000 1 000 000
255 2.05560.006 100 000 2 000
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strings as presented in Table II. We see that the statis
errors are still larger than the discretization errors com
from a particular discretization of U~1! ~although the string
density, for instance, does depend on which discretiza
one uses!. Table II also suggests systematic errors: T
higher the upper cutoffL, the lower the measured fracta
dimension. This effect has been observed, in a diffferent c
text, for U~1! strings withN53 @28#. Except for the short
strings withL52000, the measurements, however, are c
sistent with each other. To decide whether the last line
Table II is actually the manifestation of systematic errors
not, let us investigate the possible sources for such a disc
ancy. Either an excluded-volume effect is active for interm
diate distances, making the strings slightly self-seeki
which forces us to accept a scale-dependent fractal dim
sion, which was one of the conclusions drawn forN53,
U~1! strings in Ref.@28#; we are counting too many string
that are to form loops eventually~but are not identified as
loops, because of the cutoffL), which would naturally bias
the fractal dimension towards a higher number for sma
L; or our averaging procedure introduces systematic err
To explore which of these interpretations is the right one,
need to know how many of the strings that reach the len
L are to be expected to close onto themselves again to f
loops, i.e., we need to know the prefactor and the expon
involved in Eq.~4!. Once we know the number of wrongl
counted strings, we need to subtract their expected confi
rational parameters from the ensemble of infinite strings.
a first approximation, we assume that these strings have
average loop properties extracted from the loop ensem
This will actually overcompensate for the effect that tho
strings lower the effective fractal dimension because th
should, on average, of course have largerR2 than the average
strings that are actually counted as loops. This is easy to
in the large-l limit, where they are obviously not atR250,
whereas the strings that are counted as loops are arri
there for l→L. Thus we will overestimate errors comin
from this source. The procedure is now obvious: If the nu
ber density oftraced loops is

dn5ql2b11dl, ~6!

then the number of strings expected to exceed the len
L, i.e., the number of uncounted loops, is

nloop
unc5E

L

`

dn~ l !5q
L2b12

b22
.

The correctedR2 is then given by

Rc
2~nm2nloop

unc !5Rm
2 nm2Rloop

2 nloop
unc , ~7!

where the indexc stands for ‘‘corrected’’ andm for ‘‘mea-
sured,’’ for the infinite-string ensemble andRloop

2 is the mea-
sured value for the loop ensemble. In Table III we list t
configurational parametersq andb, together withnloop

unc .
Including the ~overcompensating! correction Eq. ~7!

should give us some idea of the systematic errors, bu
corrects almost all the results of Table II for the fractal d
mension down by onlyDc'D20.002, so that the statistica
errors overshadow the systematic ones by far, except for
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TABLE III. Configurational parametersq andb of the loop distribution Eq.~6! for U~1! strings, with the
expected number of loops unaccounted for in the measurements. It should be noted that there are sy
computational errors that increase as the number of strings decreases, because the loops need to b
in increasingly large length intervals. The errors quoted here are statistical errors only.q is not rescaled by
the total string number, to make the extraction ofnloop

unc more transparent.

NumberN of Number of Maximum
discretization ‘‘infinite’’ length of

points q b stringsnm stringsL nloop
unc

3 557661003 2.53060.022 6334 50 000 34619
7 33986495 2.45660.018 6394 50 000 54624
15 45066628 2.50760.018 6382 50 000 37616
31 39306646 2.49260.020 6412 50 000 39620
63 42706715 2.50060.020 6346 50 000 38620
127 33506637 2.46160.023 6373 50 000 50630
255 7966201 2.42560.035 1903 1 000 000 666
255 3680063200 2.46860.014 65773 2 000 22406550
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ensemble of 100 000 strings with upper cutoffL52000,
where there are many miscounted loops, but small statis
errors. In this case, the prediction gets corrected down
Dc52.03160.007. This makes all the measurements of
fractal dimension at different intermediate and long sca
just consistent with each other, so that we would need so
what better statistics than we have accessible at this mom
to see whether there is some physical effect or just a c
spiracy of statistical fluctuations suggesting a tendency
strings to be slightly self-seeking on intermediate scales~this
is indeed implied by a running of the effective fractal dime
sion, also implying weak violations of scale invariance,
observed forN53 by Bradley et al. @28#!. However, we
have not yet explored the third possible source of errors:
averaging procedure. Table II was obtained by taking^R2&
over the ensemble of strings, i.e., we measured the expo
k in

1

N(
i

N

Ri
2~ l !} l2k

and definedD52/k. The question is whether this is the be
possible way of defining a fractal dimension, i.e., wheth
this is a good averaging procedure. However, if the res
depend on the specifics of the averaging procedure, then
scaling hypothesis is in trouble because if, for example,
ratio @^R( l )n&#1/n/^R( l )& varies with l , then the string net-
work obviously does not look the same on all scales. T
ratio of all the moments of the probability distribution fo
R( l ) has to be such that all the@^R( l )n&#1/n stay in a fixed
proportion to each other forl /j@1. In the polymer literature
such ratios are called ‘‘~universal! amplitude ratios.’’ It turns
out @23# that the fractal dimension for a truly scale-invaria
walk is also independent of the definition ofR( l ) itself,
which could be the mean end-to-end distance~which is what
we use!, the radius of gyration~which is the average separa
tion of all point pairs on a walk segment of lengthl ), or the
root-mean-square distance of a monomer from the endpo
So, if the averaging procedure is the reason for the disc
ancies in Table II, scaling is noticeably violated up to leng
of several tens of thousands of correlation lengths. The s
al
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argument leads to another important remark:If scaling is
violated, Eq. (5) is not only violated but also ambiguou,
because an unambiguous definition ofD requires an unam-
biguous convention of how the average ofR2 is to be ex-
tracted. Such a convention is not necessary if the string
work scales.

This makes it very easy to check that the scaling hypo
esis is satisfied. First, when we compare the mean value
the measurements forD andb, they satisfy Eq.~5! extremely
well. The averageb in Table III is 2.4821, whereas
113/D with the averageD, 2.0235, is 2.4826. All we need
to show now is that the fluctuations in Table II are not sy
tematic. There are two ways of doing this: Either we impro
the statistics of the measurement, hoping that the values
verge toward each other~presumably somewhere near th
range @2.0235,2.0241#, which corresponds to the mean
measured forb andD), or we show that the ratio of̂R2& to
^R&2 stays fixed. Here we prefer the latter of the two beca
it will confirm that there are no problems arising from th
specific averaging procedure we used, whereas simply
creasing the statistics does not give us this reassura
Strictly speaking, showing that the ration of^R2& to ^R&2

stays fixed does not prove scaling unless one shows thaall
the ratios@^R( l )n&#1/n/^R( l )& stay fixed for infinite strings.

We did this by reproducing Table I with exactly the sam
ensembles~i.e., ensembles having the same random num
seed!, but usingl}^R&D instead ofl}^R2&D/2, as is used in
all the other measurements. The comparison is shown
Table IV.

It can be seen that the measurements of the fractal dim
sion agree with each other better than to be expected f
statistical errors alone. This indicates that there is not only
measurable discrepancy between the scaling of different
ments of the distribution forR( l ), but also there are correla
tions between those moments for any finite string ensem
so that, unfortunately, one cannot really exploit more th
one moment of the distribution to extract two or more sta
tically independentmeasurements forD from a single en-
semble. This is an important observation, as it justifies
only to keep on using the averaging procedure we used f
the start, but it tells us that there is no gain of statisti
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TABLE IV. Comparison of two different ways of averagingR to obtain the fractal dimension. It can b
seen that both lowest moments of the probability distribution yield the same fractal dimension to
accuracy than expected from the statistical error margins.

AverageD with AverageD with
Number Number statistical error, statistical error,
of strings of ensembles based onl}^R2( l )&D/2 based onl}^R( l )&D

1000 10 2.02760.012 2.02760.013
500 10 2.02260.014 2.01960.014
250 10 2.03560.016 2.02960.018
100 10 2.02160.030 2.02760.027
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accuracy in keeping track of more than one such avera
We conclude that the averaging procedure does not introd
additional systematic errors in Table II. We will therefo
continue to measureD by fitting D/2 in l}^R2&D/2 only.

Summing up our analysis of Table II, we conclude th
our averaging procedure does not introduce systematic
rors, but correcting for the wrong counting of the loo
longer thanL as infinite makes the measurements~just! con-
sistent with each other. Keeping in mind, however, that,
the above explained reasons, this correction is likely to
too generous, we have to agree with the conclusions of@28#
that the existence of a slightly scale-dependent fractal dim
sion has to be accepted as given. This is further supporte
the observations in Sec. IVA. Table II also suggests that
very-long-string limit ofD may be exactly 2.

C. Results for a perfectRP2 symmetry

All the qualitative arguments stay the same for anRP2

symmetry, as it is exhibited, e.g., by nematic liquid cryst
@1#. For anRP2 symmetry the vacuum manifold is a sphe
with opposite points identified@RP2 is therefore identical to
S2/Z2 or SO~3!/O~2!#. In nematic liquid crystals the occur
rence of this symmetry is easily understood: The molecu
are mirror-symmetric rods or disks and the ground state
the theory is reached when all rods have the same orie
tion. If the phase change can propagate faster than the
tuations in the rotational degrees of freedom of the m
ecules, this is only achievable locally@29#.

We have used only a minimal discretization and a c
tinuousRP2 group to compare measurements of configu
tional parameters. The minimal discretization consists of
vertices of an icosahedron embedded in the sphere, as
picted in Fig. 5. The uniqueness of the geodesic rule and
definitions of noncontractible paths on this discretization
RP2 are both immediately obvious from Fig. 5. Noncontra
ible paths are those that follow an odd number of those li
that cross the equator. Flux conservation is easily establis
too: Every tetrahedron edge has either one of the bro
lines associated with it~i.e., it carries the field values into th
other half sphere! or a solid line. Changing any one of th
links with respect to this behavior changes the flux in t
triangles. Thus the total flux can only be changed in step
two ~or zero! and the number of triangles having strings g
ing through them is always even. By going through the d
ferent combinations, it is easy to convince oneself that
thus constructed strings are also self-avoiding, i.e., that
tetrahedron has four faces penetrated by strings.
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In the continuous case, the geodesic rule can be real
as follows. Let the random field assignment on a spatial v
tex be a random vector of the upper unit half sphere. If
vacuum manifoldM were to be this half sphere only, th
length of the geodesic between two points onM would just
be the angle between the two corresponding vectors
M5RP2, the geodesic is therefore either this angle or
complement, whatever is smaller~the probability that a pair
of points is connected by a geodesic of length exactlyp/2 is
zero!. Whenever we need to take the complement of
angle between the two vectors on the upper half sphere,
geodesic will therefore cross the equator. This happens if
two field angles have a dot product smaller than zero. Si
there are three vertices to each face of the tetrahedra on
lattice, we need to take all three pairwise dot products. If
curve drawn by the geodesics has crossed the equato
even number of times, then it is contractible, otherwise
string has to pass through the corresponding triangle.
course, a similar criterion has to be possible for anyZ2
string, and was used for theZ2 strings appearing in the
breaking of SO~3! in @30#, using a bounding sphere instea
of a bounding circle. If a closed path on the SO~3! manifold

FIG. 5. Minimal discretization ofRP2 and its geodesics. It is
obtained by discretizing the points on the sphere by the vertice
an embedded icosahedron. We have to imagine that we look a
icosahedron facing one of its triangles head-on. The ‘‘sphere’
completed by identifying opposite points. Where necessary to id
tify all geodesics, points of the lower ‘‘half sphere’’ have bee
drawn, connected by dashed lines. Every point can be conne
with any other point by exactly one of the links, so that the geode
rule is unique. The noncontractible paths are the ones that go a
an odd number of broken lines, because broken lines lead onto
other half sphere.
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TABLE V. Measurements for the fractal dimension of continuousRP2 strings.

RP2 Representation Number of strings CutoffL Fractal dimensionD b

Continuous 3 000 100 000 1.97960.023 2.5960.05
100 000 2 000 1.97160.001 2.64360.014

Discrete 10 000 10 000 1.97560.014 2.6260.03
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crosses the bounding sphere an odd number of times,
noncontractible. Therefore, if the field values on the verti
of a particular triangle are~in the ‘‘vector on the upper
half sphere’’ representation! the vectors vW i , i51,2,3,
then the string flux through the appropriate triangle
n5 1

2$12sgn@(vW 1•vW 2)(vW 2•vW 3)(vW 1•vW 3)#%. It cannot have a
negative sign becauseRP2 strings are nonorientable. This
a direct consequence of the nonorientable nature of
source field: It is apparent that the sum of two noncontra
ible paths onRPN is always contractible as a noncontractib
path is one that ends in the antipode of the starting point.
concatenation of two noncontractible paths therefore end
the starting point itself. This means that anyRPN string is
any other string’s antistring in the sense that any two stri
~parallel to each other! can form objects that are no longe
topologically stabilized. Flux conservation is easily prov
@16#, but a continuous representation of theRP2 symmetry
suffers from the same uniqueness problems as a U~1!
string on a cubic lattice because a single tetrahedron
carry two strings @imagine, for instance, the vector
(u1 ,f1)5(0,0), (u2 ,f2)5(p/22e,0), (u3 ,f3)5(p/22e,
2p/3), and (u4 ,f4)5(p/22e,4p/3), which for a range of
small e has every face penetrated by a string#. To avoid
random matching of open string segments~which might in-
troduce an unnatural bias towards Brownian statistics
large scales@6#!, we chose to connect the free ends in suc
way that in case of ambiguities, every string goes throug
pair of faces that share an edge of lengtha, i.e., the edge
length of the bcc lattice. The measured ensembles ofRP2

strings are listed in Table V.
The continuousRP2 strings do not seem any mor

Brownian than the ones that are forced to be self-avoid
This may indicate@as in the case of U~1!# that the discreti-
zation of the vacuum manifold does not significantly affe
the measurements for perfect symmetry, maybe becaus
have not allowed random reassignments of string pairs
each other, but we have not checked whether a random
lution to the problem of uniqueness would indeed bias
statistics towards Brownian configurations. In any case,
discretizations ofRP2, other than the minimal one, hav
been investigated at this stage. In fact, no discretization
would be finer than the minimal one, but still force se
avoidance, is known to us. Interestingly enough, a discr
zation produced by embedding a tetrakaidekahedron into
two-sphere is uniform. Uniform distribution of the lattic
points on the sphere is a necessary criterion for unbiased
~cf. the discussion in the following sections!. However, it is
easy to convince oneself that many of the vector pairs in
scheme are at right angles to each other, introducing am
guities in the definition of the string flux through a triangl
Another discretization, achieved by embedding a dodeca
dron in the sphere, produces a discretization that does
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exhibit these ambiguities, but does allow two strings to p
etrate a tetrahedron. The appropriate proof is develope
Appendix A.

We should mention that SO~3! strings have been mea
sured to have a similar tendency to have lower fractal dim
sion and therefore higher values forb. Kibble @30# arrives at
values ofD51.95060.037 andb52.54660.065. It is there-
fore possible that such deviations are generic for eitherZ2
strings or for higher-dimensional vacuum manifolds. We w
discuss this issue further later.

III. STRING PERCOLATION
AND BIASED SYMMETRY BREAKING

A. Low string density

Drawing lessons from polymer statistics, the fact that o
algorithm generates nearly Brownian strings could be a
sult of the dense packing of strings. From what we ha
measured so far, there is a strong caveat to that statem
The continuousRP2 strings are actually denser (1/p strings
per face@25#! than the continuous U~1! strings (1/4), but
exhibit more ‘‘self-avoiding’’ statistics. This trend also hold
for the minimally discretized ensembles@5/18 for RP2 and
2/9 for U~1!#. So how does the string density affect strin
statistics?

We have already shown that for minimally discretiz
U~1! strings, a Hagedorn-like transition@31–33# occurs be-
low a critical string density@6#. According to Vachaspat
@25#, we can achieve variations in the string density by
ducing correlations in the order parameter by lifting the d
generacy of the manifold of equilibrium states. This reduc
the probability of a string penetrating the face of a latti
~thus we can generate an ensemble with theaveragestring
density fixed at will; physically, one can think of this a
applying an external field, which spoils the symmetry of po
sible ground states!, but increasesthe dimensionD, which
argues against the identification of strings with polyme
There is a critical density below which there are no infin
strings. In the low-density phase there is a scalec that ap-
pears in the loop length distribution

dn5al2be2cldl ~8!

as a cutoff. As the critical density is approached from belo
c→0 and the mean square fluctuation in the loop length

S5^ l 2&2^ l &2

diverges~see exponentsg andc in Table VII!.
This divergence signals a phase transition, in some w

analogous to the Hagedorn transition in relativistic stri
theory at finite temperature. This has been implicated
many branches of physics. Previous studies@34# deal with
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1130 55KARL STROBL AND MARK HINDMARSH
string dynamics and can treat the ensemble in thermal e
librium. The ensemble in@34# is therefore very appropriat
for situations where the critical temperature is approac
slowly. Vachaspati’s algorithm enables us to measure
rectly the string statistics such as the critical density,
dimension, and the critical exponents and to test the vali
of the hypothesis of scale invariance for theinitial condi-
tions, which cannot be expected to be thermalized.

B. Low string density and the Hagedorn transition

From the ‘‘microscopic’’ point of view, Vachaspati@25#
argued for such a Hagedorn-type transition to occur at
string densities with the following reasoning. Consider
string formation simulation on a cubic lattice. The probab
ity of a string passing through a certain face 1 of the cel
ps . Since the plaquette opposite face 1 is causally disc
nected, the probability for it to have a string passing throu
it is also ps , regardless of the actual situation at face
Therefore, the probability for a string to bend after enterin
cell is 12ps . Now, if we reduceps , the bending probability
increases and the chances of the string closing up to for
loop also increases. As Vachaspati argues, ‘‘This tells us
by reducing the probability of string formation, or equiv
lently, by decreasing the string density, we can decrease
infinite string density and increase the loop density.’’

Vachaspati then goes on to construct a model withZ2
strings~i.e., nonorientable strings!, in which he assigns eithe
11 with probability 12p or 21 with probabilityp to each
link of the lattice~on a periodic lattice!. A string is said to
pass through a plaquette if the product of the field values
the associated links is21. Although reminiscent of it, this is
not quite identical to the way we constructed ourRP2 strings
in Sec. III A, because whether a11 or a21 is ‘‘assigned’’
to a link in the continuousRP2 case depends on the relativ
angles between the three vectors involved, so that the as
ments to the links are not entirely uncorrelated. If they we
then the probability of anRP2 string passing through a tri
angular~or in fact any! plaquette should be12, whereas it is
~for a triangular plaquette and continuousRP2) 1/p @25#.
The way strings are constructed in Ref.@25#, however, is
appropriate to modelRP` strings. We can see this by th
following argument. It is well known that the different com
ponents of a random unit vector inRN, in the limit N→`,
become mutually uncorrelated Gaussian random varia
with standard deviations5AN. The inner product of any
two random unit vectors therefore will have a positive
negative sign with equal probability. The relative angles t
third unit vector and in particular their signs are then co
pletely uncorrelated to this angle, so that taking the sign
the product of uncorrelated Gaussian random variab
would indicate whether or not a sequence of geodesics
tween random points onS`/Z2 will cross the horizon.

With this model Vachaspati observed that, as the sym
try bias is increased, a lot of string mass is transferred fr
infinite strings to loops, so that the loop density actua
increases. This is not what one would expect, e.g., from
tistical arguments for a box of~noninteracting! strings in
equilibrium @33#, so that one should not assumea priori that
the string statistics right at the phase transition will follo
statistical-mechanics arguments. Another prediction
i-
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statistical-mechanics arguments is that, at low densities,
loop distribution is described by Eq.~8!, with b5 5

2. Va-
chaspati, however, measures values consistent with 2~within
large statistical errors!. As one increases the string densi
again, approaching the scaling regime,c approaches zero
from above, signaling a phase transition (c can be interpreted
as the inverse of some characteristic length scale ari
from the breakdown of scale invariance!.

Vachaspati’s argument, relating the probability of a stri
forming at a particular lattice plaquette to the Hagedorn tr
sition, actually does not go far enough. It supports the not
that the string is getting wigglier as we decrease the dens
which could, strictly speaking, result in just a rescaling
some of the parameters, but none of the exponents: The
ing function in Eq.~2! could converge towards a differen
constant, the factorq in Eq. ~6! could change, all without
changingD or b, which determine the global properties o
the network after the local properties have been absor
into appropriate prefactors. In particular, thecompletedisap-
pearance of infinite strings is not explained convincing
What Vachaspati observes in Monte Carlo measureme
however,can be explained on the microscopic level. Va
chaspati varies the string density by decreasingp, the prob-
ability for a link to have the value21 assigned to it. Let us
take it to the extreme and assume that all the links that h
21 assigned to them are so rare that they are usually isol
from each other, submerged into a sea of links with fie
value11. Then it is obvious that a string loop of minima
length winds around each of these links, so that there will
nothing but a few isolated short string loops. We can tak
further and ask ourselves what happens when two such l
are adjacent to each other. If they are consecutive links w
the same orientation, they will have their own loops of leng
4; if they are in different spatial orientations, a loop of leng
6 will form, as depicted in Fig. 6. This figure also illustrate
that, because the length of the strings seems to be intima
linked to the size of the21-link clusters,in the Vachaspati
model, the Hagedorn transition is almost a bond percolati
problem, except that parallel bonds touching each other~i.e.,
bonds along the same line! do not connect their strings with
each other and parallel bonds that are just one lattice spa
apart do. There are more configurations of these21 links
that break this correspondence between the Vachas
model and bond percolation~e.g., a flat cross of four
21-links produces two separate loops!. Thus, although there
is no one-to-one correspondence, one still intuitively expe
the Hagedorn threshold to be close to the bond percola
threshold. Indeed, Vachaspati measures a percolation thr
old of pc'0.29, while the threshold for bond percolation o
a simple cubic lattice in three dimensions ispc50.3116@35#.
There is more to be learned from the correspondence of
Vachaspati model with bond percolation. To get a respe
able number of large but isolated lattice animals, we have
approach the percolation threshold from below. At t
threshold, the percolating cluster has a well-defined fra
dimension. Thus we conclude that scaling must be resto
as the percolation threshold is approached from below an
fractal dimension will begin to become well defined. Final
we shall just mention that one can easily derive the gen
form of Eq. ~8! by similar percolation arguments.
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55 1131UNIVERSALITY AND CRITICAL PHENOMENA IN . . .
Not only can we now claim to understand the microsco
aspects of the lattice description of this Hagedorn-like tr
sition, but we also expect this transition to have many pr
erties of a percolation transition. We can relate many v
ables and critical exponents of the Hagedorn transition
critical behavior in standard percolation transitions. With
model, Vachaspati got qualitative indications of many of t
results that are to follow here. With the infinite-lattice a
the hash-table algorithms used in@6# and presented in@16,7#
we have some advantage when extracting numerical da
attempting reasonably large ensembles for good statistic

C. String percolation in the Vachaspati-Vilenkin algorithm

Now we need to go back to the more realistic model:
Vachaspati-Vilenkin method on a tetrahedral lattice. T
string density can be varied~once the lattice is chosen! only
by lifting the degeneracy in the vacuum states, i.e., by m
ing some vacuum states less likely than others. Once
details of the discretization of space and of the vacu
manifold are chosen,the initial string density, and in par-
ticular the density in infinite strings, can be changed only
spoiling the vacuum symmetry. There has been recent wor
on dynamical scaling@5#. Dynamical scaling is quite differ-
ent from scale invariance and is exhibited if the system lo
statistically the same at all times, on length scales that m
vary with time according to some power law or some oth
function of time. This does not imply that the system is sc

FIG. 6. String loops formed in this model, with one isolated li
with field value21 ~a! and with two @~b!–~d!# or three@~e!–~o!#
such links adjacent to each other. The fact that infinite strings
appear looks very reminiscent of a bond percolation problem for
‘‘( 21) links,’’ except that two consecutive strings, if they a
aligned, do not surround themselves with pieces of the same s
@the prototype is~c!, other examples are~e!, ~i!, and~k!#, whereas
neighboring parallel links do@the prototype is now~d!, with other
examples being~j!–~m!#.
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invariant. In fact, in ascale-invariant system~if it stays scale
invariant!, dynamical scaling is a misplaced concept beca
there is no length scale that could evolve in time. Parame
that arenot scale invariant, and whose dynamical scaling
therefore makes sense to observe, e.g., the average s
string separation, are those parameters that are affecte
lattice effects in the VV algorithm. The work in Ref.@5#
implies that the ratio of the densities in string loops and
infinite strings may be freely variable, based on the reali
tion that this ratio depends on the lattice description invok
We should stress that the density in loops depends on
lattice. Our tetrahedral lattice allows smaller loops~in units
of correlation lengths! than a cubic lattice, and one expec
more loops to appear because the low cutoff in Eq.~4! gets
shifted to lower values. There is also a difference in this ra
depending on the discretization of the vacuum manifold a
on the vacuum manifold itself. Thus, whereas we agree w
the general argument of Ref.@5#, we will show in Sec. VIA
that there is probably a lower limit to the amount of infini
string that has to appear and infinite strings would theref
be a generic feature of the VV algorithm on a regular latti
This issue is still controversial, but in some simple cas
such as the Vachaspati model, we can develop a percola
theory understanding for the emergence of an infinite str
network. Had Vachaspati used a tetrahedral lattice, th
would still be infinite strings, as the bond percolation pro
lem threshold for the bcc lattice ispc50.1803 and the sym-
metric case hasp50.5.pc . The reason why the bond pe
colation threshold is reduced compared to the simple cu
lattice is, from the percolation theory viewpoint, that the
are more bonds per lattice site. Within the string netwo
picture, the reason is that we have a finer mesh and there
a higher string density. In fact, on any three-dimensio
lattice pc,0.5, so that the appearance of infinite strings
lattice independent. Serious lattice ambiguities would ar
only if strings~under the same physical conditions! percolate
on one lattice, but not on another, i.e., ifpc lies in between
percolation thresholds of different lattices. No such mode
known.

Because of its better correspondence to a physical si
tion, let us consider another brief example, taken from
measurements in Sec. IV. Take the tetrahedral lattice wi
minimal discretization of U~1!. Let us denote the three pos
sible field values by 0, 1, and 2. We introduce a bias in
symmetry such that the value 2 is assigned with the proba
ity ps and the other two values have the probabiliti
(12ps)/2. Without loss of generality, let us constrain ou
selves to biases withps<

1
3. We can produce infinite string

only if all three field values percolate. In particular, this im
plies thatps.pc , where the critical valuepc is the site per-
colation threshold of a bcc lattice,pc'0.246 @35#. In the
unbiased caseps5

1
3. Again, this is higher than the site pe

colation onany sensible lattice such that the appearance
infinite strings is a generic feature. From measurement
Sec. IV, we deducepc50.247660.0014. The agreement i
almost suspiciously good, but certainly justifies the perco
tion theory arguments for an intuitive understanding of t
Hagedorn transition. Had we taken a simple cubic lattice,
would still be above the percolation thresholdpc50.3116
and get infinite strings@17#. In both Vachaspati’sZ2 model
and the minimally discretized U~1! model we get infinite
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1132 55KARL STROBL AND MARK HINDMARSH
strings irrespective of the lattice we are using. To be prec
a diamond lattice would not allow site percolation f
p5 1

3. However, because it has hexagonal ‘‘plaquettes’’~the
quotation marks are to indicate that the plaquettes are
planar!, it is unsuitable not only for a simulation of th
Kibble mechanism, but also for the percolation theory ar
ment developed here. This is because two consecu
plaquettes are not everywhere connected by link walks
length one, so that the lattice points with disfavored vacu
values do not need to neighbor each other directly to al
strings to percolate and site percolation withnext-nearest
neighbors should be our reference in this case. Percola
phenomena have long been known to be independent o
microscopic details of the lattice. This may lend some s
port to the assumption that, in Vachaspati’sZ2 model ~and
maybe more generally forZ2 strings! and for U~1! strings the
emergence of a network of infinite strings is a generic f
ture. Although the correspondence of the Hagedorn tra
tion to a percolation phenomenon seems rather strong
suffer from the same deficiency here as most of percola
theory does: There is no analytic proof.

In many respects, the best we can hope for is to estab
a better understanding through better and more nume
measurements. The next section is therefore dedicated t
results of various measurables of the percolation transit
We will present more arguments for the correspondence
the string ensembles with a percolation theory picture la
when we discuss the results of those measurements.

IV. NUMERICAL RESULTS
FOR BIASED STRING FORMATION

A. U„1… strings

The following convention has been used to introduce
bias for U~1! strings. We discretized the U~1! manifold by
N52n21 points and assigned the following probabilities
each of these pointsmP$0,1,2, . . . ,N21%:

p~m!5C21exp@2h cos~2pm/N!#,

whereh is the bias parameter andC simply normalizes the
probabilities

C5 (
m50

N21

exp@2h cos~2pm/N!#. ~9!

Unless stated otherwise, we will quote results from the m
mal discretization of U~1! in this section, i.e.,N53. The
reason why this is the best-studied ensemble is that it co
sponds most closely to a site percolation problem and th
fore relates best to the discussion of the results in Sec
First, we confirm that Eq.~8! gives an extremely good fit fo
the loop distribution beyond the percolation threshold. Ty
cal such fits are shown in Fig. 7. In Fig. 8 we compare
loop distributions for different biases. It can be seen that
low bias the string density in loops increases with increas
bias, in agreement with Vachaspati’s measurements.
density in loops as a function ofh is shown in Fig. 9. The
mass density in loops~in units of segments per tetrahedro!
is obtained in the following way. Letpt be the probability for
a triangle to carry a string segment. Since the numbe
e,
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triangular plaquettes on a tetrahedral lattice is twice the nu
ber of tetrahedra, the average number of strings per tetr
dron is then 2pt . Whenever we start tracing a string, we sta
at a randomly chosen string segment~out of all possible
segments on the imagined infinite lattice!. Thus we will pick
elements belonging to an infinite string according to th
density ratios, such that

r loop5r total
Nloop

Ntotal
, ~10!

whereNtotal is the number of strings we have traced in t
ensemble andNloop is the number of those that turned out
be loops. The unknown parameter ispt . For the minimally
discretized U~1! manifold, the sumC of Eq. ~9! is just

C52 eh/21e2h

and the probability for a triangle to exhibit all three vacuu
values on its vertices reduces to the very simple form

pt5
3!

C3 . ~11!

For other discretizations of U~1! we use exact numerica
summations to extractpt , as the functional form becomes
rather complicated sum of a number of terms that increa
asN3 and has to be evaluated for all values ofh used in the
data set. It turns out that the defect density increases slig
when a finer discretization of the vacuum manifold is us
This tendency is also observed in Monte Carlo simulations
texture formation@21# and monopole formation@15# and in
theRP2-string measurements in Sec. IV B. The string de
sity per tetrahedron in terms of the bias, for the minim
discretization of U~1!, is therefore given by

r total5
233!

~2eh/21e2h!3
.

This can be used as a reparametrization of the bias, so th
variablesX scaling likeX}uh2h!ux near the critical point
will also scale asX}ur total2r total

! ux, as it is a smooth and
analytic function of the bias. Note that, e.g., the mass den
in loops cannot be taken as such a reparametrization, as
not smooth at the critical point. Figure 9 shows the sepa
mass densities in infinite strings and loops. Note that
energy in loops at the percolation transition still exceeds
energy in infinite string at zero bias. In analogy with th
polymer literature, we could say that this transition~when
approached from the nonpercolating phase! is very efficient
in pumping energy into the entropy terms, i.e., in utilizin
new degrees of freedom as the bias is lowered. This is w
we call it a Hagedorn-like transition: The Hagedorn tran
tion @31# is associated with an exponential increase in
degrees of freedom, such that~in the thermal situation! the
Hagedorn temperature is not reachable, as all the ene
pumped into the system to further increase the temperat
goes into entropic terms of the Helmholtz free energy. Ho
ever, since our model does not deal with a thermalized
semble~or with any dynamics at all! we can still reach do-
mains beyond this Hagedorn-like transition.
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FIG. 7. Typical fits to Eq.~8!, with different values of the bias. Where infinite strings are present, no cutoff can be identified. W
L,1/c ~i.e., forh50.4), the cutoff cannot be seen, as the strings in this ensemble are too short. For higher values of the bias, the c
be recognized clearly. The dashed lines are the fits using Eq.~8!. No deviations from a behavior of the type in Eq.~8! can be recognized
The ensemble consists of 100 000 strings with cutoffL52000.
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Figure 9 allows us to measure the location of the per
lation threshold by fitting a power law of the form

r`}~h!2h!b.

~Where appropriate, the exponents are named accordin
their use in percolation theory. In percolation theoryb is the

FIG. 8. Comparison of the loop distributions for different bia
It can be seen that the loop density is increased for small bias.
large bias, the running of the cutoff length can be observed.
-

to

critical exponent associated with the strength of the infin
network. Since the total mass density is a smooth function
h, b is also associated with the mass density in loops.! We
do this by trying different fixed values ofh! and taking the
one that gives the smallest sum of residuals on a log-

or

FIG. 9. Mass density in string segments belonging to loops~in
units of one per tetrahedron! ~solid line!, in infinite strings~dashed
line!, and the total mass density, given by Eqs.~10! and ~11!. The
loop density increases as we approach the percolation thres
from above, and energy from infinite string is transferred into
loop ensemble.
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1134 55KARL STROBL AND MARK HINDMARSH
least-squares fit. This means that the statistical errors
obtained in a less accurate procedure than in Sec. III: Ins
of taking many different ensembles, we take the fluctuati
of h! to be such that the sum of the error squares in
linear fit to the plot of log(rloop) vs log(h

!2h) is allowed to
fluctuate by a factor 2 around its minimum. The respect
slopes will usually differ by an amount of the order of th
statistical error. Since we have to vary both a lower and
upper cutoff, as well as the estimate forh!, when searching
for the best fit, this method reduces the large computatio
effort that would be involved if we had extracted statistic
errors by measuring many different ensembles for ev
symmetry group. Quite often, we get very large estima
errors inh! and the critical exponents because of the ma
free variables involved. A proper analysis of corrections
scaling, as done in Ref.@28# for the minimally discretized
U~1! strings, is necessary, but will be done elsewhere.
measure

b50.5460.10,

where the fit has been done in the regionhP@0.22,0.265#,
and the errors are associated with the uncertainty inh!,
which is measured to give the best fit ath!50.27960.005.
If the uncertainty inh! is large, the errors forb quickly get
out of hand. The criterion of whether or not one gets a go
fit is not very efficient in findingh!, but it is the best we can
do. In percolation theory there is a useful procedure~cf. Ref.
@35#, p. 72! that involves observing how the probability t
find a lattice-spanning cluster, as a function ofp, scales with
the size of the lattice. For example, one could look at h
the point where this probability is12 scales with the system
size and then extrapolate where this point will end up as
lattice size goes to infinity. This gives a very good estim
for the percolation threshold only if one keeps track of
clusters generated on a given lattice. We only trace
string at a time, not worrying about the rest of the lattice,
that this method of identifying the percolation threshold do
not work.

The fractal dimension is plotted in Fig. 10 for nearly co
tinuous U~1!, but with different upper cutoffsL, and in Fig.
11 forL550 000, but with different discretizations of U~1!.

FIG. 10. Fractal dimension of the infinite-string ensemble a
function of the bias, plotted for different values of the upper len
cutoff L. The measurements are for nearly continuous U~1!.
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Five features are noteworthy.
~i! The statistical errors increase with increasing bias

cause the number of infinite strings in the ensemble beco
smaller.

~ii ! The fractal dimension stays nearly constant for ve
small bias. We observe that theL dependence ofD as mea-
sured in Sec. III isnot a statistical fluctuation.

~iii ! The fractal dimension not only becomes hard to m
sure near the percolation threshold, but also becomes ill
fined beyond it because we are counting many stri
wrongly as infinite (̂ l loop& diverges at the critical point!,
whereas they will eventually turn back onto themselves a
form loops.

~iv! The behavior is largely independent of the particu
discretization used, except for the obvious shift inh!, pro-
nounced only forN53.

~v! The measurements are consistent with a possible
sumption that, asL→`, D52 right up to the critical point.

Measurements for the average loop size—note that
mean the average size of a loop that a randomly cho
string segment belongs to—are shown in Figs. 12 and 13
Fig. 13 the effects of a finite cutoff are also explained. T
behavior is just as one would expect from percolation theo

a FIG. 11. Fractal dimension of the infinite-string ensemble a
function of the bias parameter, plotted for different discretizatio
of U~1!. The critical biases can be found in Table VII and in Fi
17.

FIG. 12. Average length of a loop in the minimal discretizati
of U~1!, as a function of the biash. HereL550 000.
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55 1135UNIVERSALITY AND CRITICAL PHENOMENA IN . . .
In the nonpercolating phase, the main contribution com
from gradually larger clusters as we approach the percola
threshold.

Let us assume the average loop size near the percola
threshold scales as

^ l loop&}uh2h!u2g.

The best power-law fits to the loop size give

h~N53!
! 50.27960.004, g51.5960.10,

measured in the rangehP@0.33,0.6#. Again, large errors are
associated with the uncertainty of where exactly the perc
tion threshold lies. This again amounts to a problem w
finite-size effects: Unlesŝl loop&!L, the ensemble averag
will miss out on large contributions from loops wrong
counted as infinite strings.

For bias values below the percolation threshold there is
critical exponent. In this domain the average loop length
divergent function of the upper cutoff and an average len
becomes ill defined. This is obvious from Eqs.~4! and ~5!
and the fact that̂ l loop&}*l

Ll2b12dl while D.3/2. This
problem is alleviated in the nonpercolating regime~where
the loop distribution is exponentially suppressed by an ad
tional factor ofe2cl), as long asj51/c!L, i.e., for values
of h not too close to the critical bias. The same argum
holds for any higher moment^ l loop

n & of the loop distribution.
Another way of investigating the ensemble is by means

a partition function, which is the~unnormalized! sum over
probabilitiesp( l )

Z5(
l
l2b11e2cl. ~12!

FIG. 13. Logarithm of the average length of a loop@with U~1!
nearly continuous:N5255,127# as a function of the biash, for
different cutoffs. For the solid lineL51 000 000, whereas for the
dashed line it isL550 000. They should~to a very good approxi-
mation! have the same critical bias. However, the lower-cutoff pe
has an inflection point, where it deviates from the power-law
havior, well before the critical point~at aroundh50.36), where we
need to stop the fits to measure the critical exponents. This e
gets worse with smaller cutoffs and gives rise to inaccuracie
estimating the exact position ofh!.
s
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This is not a thermal partition function, but should rather
viewed as a generating function for the moments of the lo
size distribution. If we wanted to use thermodynamics la
guage, then the factorl2b11 would be proportional to the
density of states for givenl ~or one could say it is a suitably
defined integration measure, which amounts to the same! and
j51/c fulfills the role of a temperature, as is shown in A
pendix C. This only serves to show that a thermodynam
nomenclature is inappropriate, as the threshold for a dyna
cal Hagedorn transition really lies at a finite temperature, a
instead of having the temperature diverge at the criti
point, one would have to factor out the divergent terms a
pull them into the density of states. This distinction becom
meaningless in our nonthermal ensemble. Our ‘‘partiti
function’’ can equally well be viewed as a sum over t
density of states only, with a critical temperature~or density!
dependence. Although these names are slightly inappro
ate, they give the right behavior, e.g., for the average ‘‘e
ergy’’ ^ l loop& in the nonpercolating phase

^ l loop&52Z21
d

dc
lnZ.

Since the parametersb and c are crucial in this interpreta
tion, measurements for them are shown in Figs. 14 and

k
-

ct
in

FIG. 14. Loop distribution exponentb in Eq. ~8!, for an en-
semble of 10 000 strings with cutoffL550 000.

FIG. 15. Parameterc in Eq. ~8! for the same ensemble as in Fig
14.
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1136 55KARL STROBL AND MARK HINDMARSH
Although the parametersb andc are comparably easy t
measure, since one does not have to guessh!, there are still
large statistical fluctuations forb. Forh.h!, b is allowed to
be smaller than 2, since the scaling relation Eq.~5! no longer
holds. It becomes more difficult to measureb at large bias,
but it is also less important there since the exponential cu
dominates the loop size distribution. The diverging leng
scale associated with the phase transition isj51/c, which is
plotted in Fig. 16.

There is another critical exponent associated with the
vergence ofj:

j}~h2h!!21/s.

Implicitly, we measure for the percolation thresho
h!50.28060.003. The critical exponent is

s50.4660.02.

Before concluding this section, we measure the critical
ponent in

^ l loop
2 &}~h2h!!2c,

which gives~as well ash!50.27760.004)

c53.7960.14.

This is the exponent associated with what we called ‘‘s
ceptibility’’ in Ref. @6#, S5^ l loop

2 &2^ l loop&
2, since the diverg-

ing behavior of^ l loop
2 & dominates in the expression forS

becausec.2g. In terms of the partition function, it is

^ l loop
2 &5Z21

d2

dc2
Z

such that^ l loop
2 &52Z21(d/dc)(Z^ l loop&). When compared

to a Hagedorn transition, however, we want the derivative
^ l loop& with respect to a temperature~i.e., any smooth re-
parametrization of the bias! such that a proper definition o
the susceptibility as the energy cost per loop associated
decreasingh would simply diverge with an exponen
(2g21) @from ^ l loop&}(h2h!)2g and the ‘‘energy cost’’
per loop associated with decreasing the bias beco

FIG. 16. Parameterj51/c in Eq. ~8! for the same ensemble a
in Fig. 14. Very large values in the regionh,h! just correspond to
statistical fluctuations ofc around zero.
ff
h

i-

-

-

f
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es

(d/dh)^ l loop&#. Another reasonable definition of a suscep
bility would be to define it ~at least for h.h!) as
(d/dh)r loop, which then diverges with the exponen
(2b21).

This concludes the discussion of the critical behavior
the ensemble with a minimal discretization of U~1!. Mea-
surements for the other ensembles with gradually finer
cretizations of the vacuum manifold are listed in Table V
Note that the measurements supercede the ones in@6#, where
the string ensembles were smaller and fewer compared to
ones available now. A reminder of which exponent is as
ciated with which variable can be found in Table VI.

Ideally, we should have two ensembles for every discr
zation, one with a smallL, allowing us to trace a large
number of strings to extract the exponentc, and one with
very largeL, to measure the divergences in the average lo
size, to which the loops of lengthl&L contribute the most,
as we approach the critical point. However, we do not not
too much of a reduction of statistical errors by doing this~as
is done forN5255), so these ensembles have not been g
erated. A cutoff ofL52000 is clearly too low to give sen
sible answers: The very long string ensemble agrees with
medium-cutoff ensembles, whereas the ensemble with cu
L52000 allows hardly any measurements and the one
ponent that is measurable is obviously affected by sev
systematic errors. This also means that on a finite lattice
about 453 lattice points, which amounts to a similar cutof
measurements like the ones presented here are virtually
possible. In this way we can understand that—for lack of
infinite-lattice formalism of the kind we are using for the
ensembles—no one, to our knowledge, has picked up
Vachaspati’s model to investigate the Hagedorn transit
more closely.

Another consequence of finite cutoff effects is that t
measurements ofg give the best fits to a power law and a
therefore the best indicators of where the percolation thre
old lies. The reason for this is simple to understand: La
loops give the main contribution towards the length avera
and finite cutoff effects will eventually flatten the pea
which should diverge at the critical bias. However, the co
tribution of large loops tô l loop

2 & is even more important and
finite cutoff effects will spoil the power-law approach to th
critical point at a much earlier stage, such thatc has much
larger errors associated with it, and it is recommendable
use estimates forh! that were obtained from fits of the av
erage loop size to a power-law behavior. The same is true
c ~and its associated exponents) for similar reasons, which
in an intuitive fashion, one might simply sum up as follow
The smaller the modulus of the critical exponent, the clo
one can go towards the critical point without ‘‘feeling
finite-size effects.

In Fig. 17 we present the values of the critical string de
sity as a function of the discretization of U~1!. It can be seen

TABLE VI. Summary of the definition of the critical exponent

j51/c}(h2h!)21/s

^ l loop&}(h2h!)2g

^ l loop
2 &}(h2h!)2c

^r`&}(h!2h)b
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thatN*15 is already very close to the continuous U~1! limit.
In this sense, the ensembles withN>31 in Table VII can be
interpreted as the same measurements over severa
sembles of the same kind.

Finally, it is worthwhile testing the validity of the scalin
relation for configurational exponents@Eq. ~5!#, which, as we
have discussed before, implies that on intermediate sc
loops show the same fractal behavior as infinite strings. S
ing seems to hold roughly. Considering that the exponenb
is usually taken from quite noisy data~except when close to
the percolation threshold!, the agreement seems very go
and is shown in Fig. 18 for theN563 ensemble. Whenc is
constrained to be zero, as it was done to obtain Fig. 18, s
plots give a very good first estimate of the percolati
threshold and the Fisher exponentt, i.e., the value ofb at
criticality, which plays a prominent role in Sec. V, when w
will come to use the partition function to describe gene
scaling relations.

B. RP2 strings

For RP2 strings our conventions of what the bias mea
depend on the discretization. For the minimally discretiz
RP2 strings~cf. Fig. 5!, we define a biasz as

FIG. 17. Critical string density~in units of string segments pe
tetrahedron! plotted against the number of discretization points
the U~1! manifold.
en-

les
l-

ch

l

s
d

p~0!5p~1!5p~2!5
11z

6
,

p~3!5p~4!5p~5!5
12z

6
,

such thatz51 corresponds tor total50, z50 is a perfect
RP2 symmetry, andz521 is a perfect U~1! @if all the
vacuum values live on the equator, we have the symm
U(1)/Z2, which is homeomorphic to U~1! and produces ex-
actly the same results as the minimally discretized U~1! en-
sembles#. For the continuousRP2 simulations, we define a
biasm such that the normalized probability density for th
polar angleuP@0,p/2) ~i.e., constrained to the upper ha
sphere! is

dp~u!5
m

12e2m e
2m cosusinu du. ~13!

The unbiased case corresponds again tom50, butm can run
from2` to `, where it corresponds to zero string density
a U(1)/Z2 symmetry, respectively.

Apart from the critical exponents, the interesting featu
about biasedRP2 symmetries is that one can bias them t

r FIG. 18. Testing the validity of Eq.~5! on a U~1! string en-
semble withN563.
rge
rs
TABLE VII. Critical exponents and percolation thresholds for different discretizations of U~1!. The
values quoted forh! are taken from the measurement ofg. In the case of the very lowL, the divergences for
loop sizes flatten out long before the critical point and no exponents can be extracted. For very laL,
however, the number of traced strings is not large enough to extractc. The errors quoted are statistical erro
only. NA denotes ‘‘not available.’’

N L h! s g c b

3 50 000 0.27960.005 0.4660.02 1.5960.10 3.7960.14 0.5460.10
7 50 000 0.29960.005 0.4460.02 1.7760.14 3.8560.16 0.4560.07
15 50 000 0.29560.007 0.3960.04 1.8660.13 4.560.3 0.3960.06
31 50 000 0.30560.005 0.4260.02 1.7560.03 4.160.3 0.4560.06
63 50 000 0.30960.005 0.41760.017 1.6960.07 4.060.2 0.5060.07
127 50 000 0.30160.004 0.41360.013 1.8060.06 4.0760.14 0.4160.05
255 2 000 0.33960.005 NA NA NA
255 106 0.30060.002 NA 1.8360.07 4.1060.15 0.45660.025
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1138 55KARL STROBL AND MARK HINDMARSH
wards the U~1! ensembles, which we have measured alrea
The fractal dimension then runs from what we have m
sured for U~1! to values lower than 2. This is shown in Fi
19.

If this effect is caused by the running of the string dens
as comparisons of the relative densities seem to suggest@the
average number of penetrated triangles in continuous U~1! is
1
4, whereas for continuousRP

2 it is 1/p @25##, our case for
arguing that the string statistics quite generally depend on
string density in a way opposed to the tendency polym
show gets further support from this picture. Vachaspa
model itself would be the obvious testing ground for suc
hypothesis~the penetration probability per plaquette is1

2, the
highest known in any model so far!, but unfortunately he
quotes measurements neither forD nor forb at zero bias and
his plots have too large statistical fluctuations to extrapo
towards zero bias. A more detailed analysis of this is giv
in Fig. 22.

Let us now turn to the measurements of the critical ex
nents. The average loop size has a very distinct peak a
critical point, immediately allowing a rough estimate of th
critical bias atm!521.87560.025. This is displayed in Fig
20.

When we measureg, we get the best fits for
m!521.8660.01 and

g51.7060.06,

seemingly in very good agreement with the U~1! data. Also

c53.8360.14, s50.43560.013.

To obtain^r`&, we first calculater total with a Monte Carlo
integration

r total5E E E dV1dV2dV3np~V1!p~V2!p~V3!,

where *dV stands for*0
2pdf*0

p/2du, p is defined by Eq.
~13!, andn is the string flux as a function of the three pa

FIG. 19. Running of the fractal dimension. At zero bias w
measureD51.96, whereas for large positive bias the U~1! measure-
ments are recovered asymptotically. As we approach the z
density limit ~large negativem), the fractal dimension increase
sharply before becoming ill defined. The ensemble has 3000 str
with L5105.
y.
-

,

e
rs
s
a

te
n

-
he

wise dot products, as defined in Sec. II C. Then we ta
againr`5r total(N` /Ntotal), whereN with a subscript stands
simply for the total number of appropriate strings in the e
semble. The results of this integration are plotted in Fig.
together with the mass density in loops and infinite string

It can be seen that the loop density is considerably low
than for U~1!, climbing toward the value measured for U~1!
strings asm→` and making up the total string density b
yond the percolation threshold. There are some statist
errors attached to the lines indicating the loop and infin
string density, as the ensemble of Fig. 21 consists of o
3000 strings (L5100 000!.

From the infinite string density we measure

b50.4060.03.

A comprehensive table of measurements can be found
Table VIII.

Let us now return to a question raised earlier: Is the str
density the fundamental parameter, dictatingD andb? Fig-
ure 22 shows that this cannot be the case. There we plo
density vs. the fractal dimension. Most of the density regi
is reached twice, once for negativem and once for positive

o-

gs

FIG. 20. Loop size distribution for negativem only. It allows a
very good estimate of the position ofm!.

FIG. 21. Density of string segments in the continuousRP2 en-
sembles as a function of bias. The density in loops is shown as
dot-dashed line and the density in infinite strings is the dashed
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TABLE VIII. Summary of all the measured critical exponents, compared with critical exponen
three-dimensional site~or bond! percolation.

Percolation Minimally Continuous Discrete Continuous
Exponent theory discretized U~1! U~1! RP2 RP2

s 0.45 0.46~2! 0.42~2! 0.435~13! 0.40~3!

b 0.41 0.54~10! 0.45~3! 0.41~3! 0.34~4!

g 1.80 1.59~10! 1.77~6! 1.70~6! 1.68~13!
c 4.04 3.79~14! 4.10~15! 3.83~14! 3.75~25!
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m. The fractal dimension, as we go towards the critical po
diverges already for string densitieshigher than the densities
we can achieve for positivem, where the string ensemble ju
turns into a U~1! set of Monte Carlo data. The fundament
lesson to learn from this is that, although spoiling the sy
metry may be the only way to change the string density
our lattice description, it can sometimes be done in differ
ways and lead to entirely different results.

For the minimal discretization ofRP2 it is straightforward
but lengthy to derive

r total5
1
18 @523z222z3#.

It can be seen that it has the right behaviorr total→0 as
z→11 and r total→ 2

9, which is the value for the minima
discretization of U~1!, asz→21. It also has an extremum a
perfect symmetryz50. This means that it shows all th
qualitative features of the bias dependence we observe
Fig. 21 for the continuousRP2 strings. The success of dis
cretizations ofRP2 in reproducing qualitatively the behavio
of the continuous manifold is quite striking: We have tes
another icosahedral discretization, obtained by viewing
vertex of the icosahedron head-on~such that all the other five
points are equatorial ones!. Again, this reproduces the sam
qualitative curve for the bias dependence of the density
turns exactly into a representation of theN55 discretization
of U~1! when biased towards equatorial vacuum states~with
the same string density!. The density, together with the den

FIG. 22. Density of string segments in the continuousRP2 en-
sembles as a function of the total string density. The two ends o
function differ distinctly for positive and negative values of th
bias.
t,

l
-
n
t

in

d
a

d

sity in loops and infinite strings, is shown in Fig. 23. A
components have qualitatively the same behavior as in
continuousRP2 ensembles.

From this we can conclude that, again, the discretizat
of the vacuum manifold does not spoil the physical pictu
qualitatively. On sets of 10000 strings withL525 000, we
measure that the percolation threshold is atz!

50.42560.004, s50.4060.03, b50.3460.04, g51.68
60.13, andc53.7560.25.

What is somewhat unexpected is that for theRP2 en-
semble, violation of the ‘‘strict’’ scaling relation Eq.~5!
seem to be apparent even in the regime of low bias. Wh
the bias turns the symmetry into U~1!, the strict scaling re-
lation Eq. ~5! seems to hold. For the other values, althou
statistical fluctuations are recognizable, there seems to
consistent trend towards too large values forb, which disap-
pears again at the critical point@cf. the same discussion fo
biased U~1! strings#. Perhaps the deviations seen for U~1! in
Fig. 18 are also not just statistical errors. An analogous p
for RP2 strings is shown in Fig. 24 for the discretized man
fold and in Fig. 25 for the continuous one.

The obvious source to suspect would be a cutoff dep
dence forb. However, this is not the case. We have chang
upper and lower cutoffs for the loop distribution before fi
ting it to Eq. ~4!, and the results do not change qualitative
b stays recognizably larger than predicted by Eq.~5!.
Clearly, a better analysis of this violation of scale invarian
even in the percolating regime, is needed. Here, however
will focus on the nonpercolating regime from now on.

e
FIG. 23. String densities of the discretizedRP2 ensembles. The

contributions from loops and infinite strings are shown separate
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1140 55KARL STROBL AND MARK HINDMARSH
V. PERCOLATION THEORY, UNIVERSALITY,
AND POLYMERS

A. Percolation theory and critical phenomena

The most notable fact about the critical exponents
have measured in the preceding section is that not only
they agree with each other, thus indicating universal beh
ior for string defects at the critical density, but they al
show reasonable agreement with the exponents obtaine
standard site or bond percolation. This fact has already b
noticed for theN53 discretization of U~1! strings@28#. We
give a comparison of the measured exponents, includ
their statistical errors, with known results from percolati
theory in Table VIII.

It is seen that the continuous symmetries show some
sonable correspondence with percolation data, whereas
minimally discretized U~1! ensemble deviates more strongl
The RP2 data have critical exponents that are consisten
slightly lower than the percolation theory exponents. T

FIG. 24. The scaling relation Eq.~5! seems to be consistentl
violated, even in the low bias regime, except at the critical po
and, perhaps, at a perfect U~1! symmetry. These are the ensembl
with the discretizedRP2 manifold. The loop statistics are not ex
tremely good, as the number of loops for zero bias~i.e., where it is
the lowest! is '1800.

FIG. 25. Same plot as in Fig. 24 for the continuousRP2 mani-
fold. There are also large statistical errors inb, as the number of
loops is extremely small ('500) at low bias.
e
o
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allows some fairly wide-ranging conclusions. For instan
we can now, without having made the appropriate meas
ments, expect Vachaspati’s model not only to be ‘‘nearly’
bond percolation problem as far as the actual percola
threshold is concerned, but it may also have critical ex
nents very close to the ones of bond percolation.

This is indeed somewhat surprising: From the point
view of percolation theory, we have constructed a very aw
ward definition of ‘‘clusters.’’ Not only are they topologi
cally defined, but they are also definable through continuo
as well as discrete, manifolds of possible lattice states.

There is another comment to be made: From Table V
one could hypothesize that there may be a trend for high
dimensional manifolds to deviate more strongly from perc
lation data. However, Vachaspati’s previously discuss
model describes strings produced from aS`/Z2 ground-state
manifold. We have shown above that this model correspo
closely to site percolation, such that one expects espec
the Vachaspati model to be close to a percolation probl
Therefore one would not expect the differences between
RP2 data and standard percolation exponents to be a gen
consequence of the higher dimensionality of the manifold

However, our measurements certainly do not seem
compellingly suggest exact agreement of our critical ex
nents with bond~or site! percolation in three dimensions
Nevertheless, the relative smallness of the deviations sh
make no difference when one tries to understand the poss
physical relevance of the string statistics near the criti
point. Let us therefore try to learn more lessons from per
lation theory.

B. Fisher exponent and partition function

The first step towards some indications that there
some universal relations between the configurational ex
nents~and that, therefore, we may extract more expone
than we have actually measured! has been done already b
defining a partition function in Eq.~12!, which we can view
as a generating function for the loop size distribution, su
that

^ l loop
n &5Z21S 2

d

dcD
n

Z.

This partition function has the same functional form as
one derived in@34# in the dilute free-string approximation. I
we want to return to a physical interpretation of the partiti
function, it is perhaps natural to expect some of the ingre
ents of the results of Ref.@34# to enter the description. In this
way, one is led to interpretc as an effective string tensio
seff , divided by a temperature, and the Hagedorn transit
occurs when the effective string tension~or the effective en-
ergy per unit length of string! is zero. Another paper by the
same authors@36# then provides the understanding for th
mechanism by which the Hagedorn transition occurs in
case of biased symmetries: We have seen from the mi
scopic details of the lattice description that, for biased sy
metries, the strings tend to become more crumpled as
wind around the sparsely spread lattice points with dis
vored vacuum values. In@36# it has been shown that for th

t
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reverse situation, when one tries to incorporate stiffness,
effective string tension for fixed temperature behaves as

seff5s2
ln@~11z!e2bu#

l 0b
,

whereu is the energy cost of turning a string through a rig
angle andz is the number of directions available to the stri
at every lattice point. From the details of the lattice descr
tion ~and also from an intuitive point of view in the con
tinuum case!, this energy cost becomes negative for stron
biased symmetries, as becomes immediately obvious if
considers the limit in which the disfavored vacuum valu
occupy only very small regions of space to understand
trend of negative energy cost associated with crumpling
string, so that for some value of the biasseff50 will be
achieved and a Hagedorn transition occurs. However,
correspondence is qualitative at best, since we do not
with string dynamics. For this reason, the exponentb in the
partition function, for example, also differs from the one o
tained in@34# and the actual string tension right at the pha
transition is zero by definition~at least in the case of
second-order phase transition!. A more stringent proof tha
such a thermal interpretation of the partition function yie
nonsensical results is developed in Appendix C. Since ‘‘ou
partition function describes the initial conditions for dynam
cal calculations, one should not view it as being more th
the generating function of the moments of the loop len
distribution.

If we know howb andc scale at the critical point, we ca
derive the critical exponents for all the moments of the lo
length distribution. From Sec. IV A it is clear thatb depends
only weakly on the bias, whereasc scales as
c}uh2h!u2g. In agreement with the percolation theory li
erature, we definet5b(h!) and will call it the Fisher expo-
nent. The critical exponents for the moments of the lo
distribution are then derived by

^ l loop
n &5Z21S 2

d

dcD nF(l l2t11e2clG}(
l
l2t111ne2cl.

Approximating the sum by an integral, we have

^ l loop
n &}E l2t111ne2cldl}ct222nE z22te2zdz

}uh2h!u~t222n!/s, ~14!

where we have approximatedb by the constantt in the first
step and usedc}uh2h!u1/s in the last step. The integra
over z is just a numeric constant. Thus we find that the f
lowing scaling relations should hold for our string e
sembles:

g5
32t

s
, c5

42t

s
, ~15!

and so on for higher moments of the loop distribution. In t
way, one can use two of the critical exponents as the fun
mental ones and derive the others from them. Note that, a
the measurements of Sec. IV A, the partition function is
longer just amodelof how the moments of the loop distr
e
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bution should scale: It is a strict consequence of the fact
Eq. ~8! is satisfied so well by the data. The fact that onlytwo
critical exponents can be independent is also a consequ
of the existence of justone crossover length scale. This i
discussed in Ref.@23#. The trouble with our definition of a
generating function is that it yields the loop length distrib
tion only forh.h!. What one is interested in for low bias i
the density in infinite strings. The critical exponents there
cannot be extracted as straightforwardly as the other ex
nents of the loop distribution, seeing that^ l loop

0 & would for-
mally correspond to 1. A prescription that is generally wor
able in percolation theory is to argue that since

^ l loop&}
d

dc
^ l loop
0 &,

we can write

r`5const11const2^ l loop&c

and therefore

r`}uh2h!u~t23!/s11/s,

such that we have

b5
t22

s
. ~16!

This can also be made more precise by introducing a gen
scaling function that is meant to describe both the long- a
short-range limits exactly. We chose not to introduce it h
since we do not have enough data to extract such a sca
function. One may wonder why this gives the behavior
infinite strings rather than the total mass density or the lo
mass density. To answer this, one can just remind one
that we have extended arguments that hold only for loop
h.h!. In this regime, gradually longer and longer loo
dominate the loop size distribution such that if we extend
arguments beyond the percolation threshold, it is only
infinite strings that contribute to the moments of this dist
bution. This can easily be seen by the fact that all mome
^ l & and higher, if defined through the partition function, d
verge in the whole percolating regime.

The scaling relations~15! and ~16! seem to be very well
obeyed by the critical exponents we measure and seem
give a value oft consistent with what we observe in Fig. 1
and consistent with each other. The different predictions
t, to make the scaling relations consistent with each oth
are listed in Table IX.

TABLE IX. Testing the scaling relations Eqs.~15! and ~16! by
comparing the values of the Fisher exponent predicted by them

Minimally Continuous Discrete Continuous
t discretized U~1! U~1! RP2 RP2

bs12 2.25~6! 2.19~2! 2.18~2! 2.14~3!

32gs 2.27~8! 2.26~6! 2.26~5! 2.33~11!
42cs 2.26~15! 2.28~15! 2.33~11! 2.50~22!
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C. Average loop size

Encouraged by this, we can go on to another cosmolo
cally perhaps more relevant parameter, which is not dire
measurable from our ensembles, since we did not rec
string-string correlation functions. It is another correlati
length, call it x, that measures the average separation
tween two points on the same string. This gives a clea
picture of the actual physical size of a collapsed string lu
beyond the percolation transition. Define

x25

(
r
r 2g~r !

(
r
g~r !

,

whereg(r ) is the probability of finding, at a distancer from
the origin, a segment of string belonging to the same str
as the segment at the origin. If we call the average squa
distance between two string segmentsRl

2 , we have to weigh
it with the number of string segments in loops of giv
length to obtain the same definition forx in terms ofRl

2,

x25
2(Rl

2nl l
22te2cl

(nl l
22te2cl .

Thus, apart from numerical prefactors,x is the radius of
those loops that give the main contribution to^ l &. Since we
have already established that, at least close to the percol
threshold, Eq.~5! is satisfied and loops have part in a prop
definition of the fractal dimension, we can substitu
Rl}s

1/D and the numerator scales, according to Eq.~14!,
with a critical exponent (32t12/D)/s. The denominator is
just ^ l &, such that, for the longest loops~i.e., the ones tha
exhibit fractal behavior on intermediate scales!,

x}uh2h!u2n,

with

n5
1

Ds
,

whereD is now the fractal dimension at criticalityD'2.5.
We have thus a reasonably good understanding of how
statistics of stringy lumps changes as we approach the H
dorn transition.

One interesting aspect of this may relate, for instance
axion cosmology: It is known@37,38# that the U(1)PQ
Peccei-Quinn symmetry arising in axion models may ne
have been a perfect symmetry. If this is the case, this m
solve the domain wall problem arising in thermal axion s
narios @i.e., scenarios with no inflation below the Pecc
Quinn scale where the Peccei-Quinn symmetry U(1)PQ
arises# with color anomalyN.1. The network of axionic
domain walls, arising at the QCD scale, bounded by axio
strings, which formed at the Peccei-Quinn scale, may ne
have been an infinite domain wall network. This would so
the domain wall problem in thermal axion scenarios.
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VI. OPEN QUESTIONS

A. Features generic to properties of the vacuum manifold

We have seen that, at perfect symmetry,RP2 strings and
SO~3! strings tend to have lower fractal dimension and the
fore higher values ofb than the U~1! strings. Within the high
statistical errors and considering the extremely low value
L used in@30#, it is impossible to conclude with certaint
that there are significant differences in these parameters
tween RP2 strings and SO~3! strings, although the mea
value ofD measured by Kibble for SO~3! strings is 1.95, i.e.,
it is lower than forRP2 strings. It would be worth investi-
gating whether the lower fractal dimension is generic toZ2
strings, to non-Abelian strings, or indeed, as our hypothe
goes, to the higher string densities one achieves with th
symmetry groups. Having data for so few vacuum manifo
only, this question remains unanswered at present.

Furthermore, the fraction of mass in string loops is low
in SO~3! strings ('5% @30#, to be compared with caution
since a cubic lattice was used! than in RP2 strings
('19%! or U~1! strings ('35%!. The same questions as fo
the symmetry dependence ofD and b arise. Nevertheless
the tendency to have fewer loops with increasing string d
sity is apparent. Vachaspati’s graphs@25# for the loop den-
sity, when extrapolated to zero bias, are extremely close
zero.

One way of addressing this would be an approach sim
to the one presented in Fig. 19, starting with a symme
manifold of high dimensions and transforming it smooth
into several different lower-dimensional symmetries. This
planned for the future. Ideally, one would want some a
lytic arguments for why such a symmetry-group depende
should occur, if it can be observed consistently for seve
different vacuum manifolds.

A partial answer can, however, be given right now: Sin
Vachaspati’s model is equivalent to anRP`[S`/Z2 symme-
try, the sequence $U(1).S1/Z2, RP2.S2/Z2, SO
(3).S3/Z2, . . . ,S`/Z2% has been probed to some exten
and it seems that as we move along this series, the st
density increaseswith the dimensionality of the vacuum
manifold. For continuous representations of the symme
group, the exact string densities have been calculated by
chaspati@25#.

We now know that, at least among theRPN symmetries,
the lowest string density and lowest proportion of density
infinite strings is probably achieved for a U~1! symmetry.
Now let us remind ourselves that the smallest allowed str
loops~in lattice units of the dual lattice! on the tetrakaideka-
hedral lattice are probably shorter than on any other sens
regular lattice and the fraction of string mass in loops fo
fixed vacuum manifold is therefore likely to be higher on
tetrakeidekahedral lattice than on any other one. We th
fore suspect that the measured proportion of infinite str
density for U~1! strings is the lowest one can find on an
regular lattice and for anyRPN vacuum manifold. It is cer-
tainly the lowest found to date in VV simulations at perfe
symmetry on a regular lattice. All vacuum manifolds, oth
than U~1!, with nontrivial p1 have more dimensions tha
U~1!. If the dimensionality of the vacuum manifold turns o
to be the relevant parameter, the measured 63% for U~1!
strings would actually be the lowest mass fraction of infin
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55 1143UNIVERSALITY AND CRITICAL PHENOMENA IN . . .
strings forany vacuum manifold onany regular lattice, if
measured with the VV algorithm.

However, when comparing these symmetry groups, e
at perfect symmetry, one observes that they just continue
trend one observes for spoiled symmetries when mov
away from the percolation threshold: As the string dens
increases, not only the loop density, but also the fractal
mension decreases. This seems to suggest that the total
density may play a fundamental role in deciding the frac
dimension of the strings, even in an unbiased symmetry.
are lacking an analytic argument for this hypothesis, and
22 introduces the additional complication that biased sy
metries do not scale their string statistics the same wa
unbiased ones do, although the trend of an increase in
fractal dimension with decreasing density is maintained
either case. Group theory alone does not seem to tell m
about where the strings go. Perhaps a renormalization-g
description, generalizable to different symmetries, would
useful in shedding some light on this question. This brings
to the next unsolved problem: We do not haveany
renormalization-group description that allows us to put
~and conserve! the string density as the fundamental para
eter.

B. Renormalization-group arguments

Having observed that the scaling relation Eq.~5! holds
reasonably well through a whole range of values of the b
we would like to understand how this comes about sin
percolation theory does not really help us there~except when
close to the threshold!. Because we are dealing with a critic
phenomenon, one would hope that renormalization-group
guments can shed light on this question. In this section
will mention the difficulties with such attempts and why w
have been unsuccessful~so far! in finding nontrivial fixed
points.

It is straightforward, but tedious, to deriv
renormalization-group arguments, derived from RG ideas
percolation theory, with vacuum field averaging~at least in
the lattice description!. The technical parts of this appear
Appendix B. Here we just take the renormalization-gro
polynomial as given. Let us group the sites of a unit cell
the bcc lattice@i.e., a cell with spanning vectors (1,0,0
(0,1,0), and (12,

1
2,

1
2)# into a single supersite such that th

coarse-grained lattice is again a bcc lattice with twice
lattice spacing of the original latticea852a. If we take a
U~1! symmetry discretized byZ3, at arbitrary biash, such
that the probabilities for the three vacuum values
p(0)5p and p(1)5p(2)5 1

2(12p), with a sensible renor-
malization procedure~see Appendix B!, the renormalized
bias becomes

p85
105

8
p8255p71

315

4
p62

63

2
p52

175

8
p41

35

2
p3.

The fixed points are the solutions top8(p)5p and are, as
expected, at 0,13, and 1. Because the renormalization proc
dure in Appendix B was chosen such that the field val
over the group of sites are averaged in some sensible w
this means that the interpretation of the vacuum values,
isting at the sites of the tetrahedral lattice, as a horiz
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volume average over the field value is sensible and, eve
the description is chosen to be more or less coarse gra
than one correlation length per lattice spacing, we would
the same scaling laws for any such lattice description at z
bias (p5 1

3! or at maximum bias (p50,1, which are trivial
fixed points, as no strings appear at all and the field is in
true ground state!.

This is comforting in itself, but clearly this renormaliza
tion does not preserve the features we have measured
small bias:p5 1

3 is the only nontrivial fixed point, but is
unstable (dp8/dp.0 at p5 1

3!, which means thatany series
of coarse grainings will end up at a trivial fixed point if w
start with any small bias. If this was a sensible discretizat
procedure, we would have to conclude that large loop si
are exponentially suppressed forany nonzero bias. This
renormalization procedure is clearly inappropriate when
try to understand string percolation near the percolat
threshold becausepcÞ

1
3. For pc,p, 1

3 the simple averaging
will always produce a homogeneous background on la
scales and therefore predict no infinite strings at all.

For biases near the string percolation threshold, a me
ingful renormalization procedure would have to keep info
mation on the percolation properties of the least like
vacuum value. In that case, however, the obvious approac
to take a standard percolation renormalization. This wo
mean we gain nothing that we do not know yet, as the b
we could do to develop some intuitive understanding of
Hagedorn transition on the lattice was to take percolat
theory results, before we even started contemplating ab
the renormalization group.

However, it turns out that the renormalization group
three-dimensional percolation is never exact@35# and needs
systematic improvement, so that the coarse graining does
reconnect disconnected clusters or disconnect conne
ones. On some level, this problem will always reappe
Therefore the systematic improvement does not yield an
act renormalization group either. From Fig. 6 it is obvious~at
least for Vachaspati’sRP` model! that such systematic im
provement would differ, depending on whether we want
improve the renormalization group for a string description
for a bond percolation problem. This explains on a mo
formal basis why the Vachaspati model is so close to a p
colation problem but not quite identical to it.

Clearly, finding a systematically improved renormaliz
tion description starting from a percolation picture wou
enhance our analytic understanding of the Hagedorn tra
tion and associated critical exponents. Depending on how
details of this procedure will turn out to work, it may the
also be possible to extend it to groups other thanS`/Z2 and
the minimally discretized U~1!, for which the percolation
theory picture was so effective.

It is not at all obvious what variables should be conserv
in such a renormalization-group description. We have see
this section that preserving vacuum field averages alon
not enough. Towards the end of Appendix B we show t
preserving the string flux alone is not enough either.

CONCLUSION

We have investigated how generally known concepts
statistics of topological line defects are affected if
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1144 55KARL STROBL AND MARK HINDMARSH
symmetry-breaking phase transition occurs in such a fas
that the remaining symmetry in the manifold of possib
ground states is only approximate. Such a concept has
familiar as a solution to the domain wall problem. There
leads naturally to a percolation theory understanding of
fect statistics because the sets of possible ground state
disconnected. So far this concept has not been worked
properly for continuous symmetries, mainly perhaps beca
the naive correspondence with standard percolation the
breaks down for continuous symmetries.

Out of the variety of possible defects exhibited by no
simply-connected continuous vacuum manifolds, we c
cerned ourselves in this work with string defects in bo
perfect and approximate symmetries. With improvements
our algorithm, explained in detail in Ref.@7# and based on
the methods of Ref.@6#, we have been able to go muc
further with the measurements presented here and are ab
provide answers to a number of important questions.

~i! Is the fractal dimension of infinite strings precisely
For infinite strings in the U~1! models the answer, summa
rized in Table II, is ‘‘yes,’’ within the statistical errors o
about 0.8%~to reach this accuracy we have used a sim
extrapolation to cope with finite-size effects!. It should be
noted, however, that this is the infinite-length limit of a ru
ning effective fractal dimension~compare Ref.@28#!. For
strings in theRP2 models~see Table V! the answer appear
to be ‘‘no’’: we have good evidence from the low-cuto
high-statisitics simulations of the continuousRP2 manifold
that the fractal dimension is slightly lower than 2. More e
dence is displayed in Fig. 19, which shows that the frac
dimension of discretizedRP2 strings is less than that of U~1!
strings.

~ii ! Are strings scale invariant in the percolating phas
Scale invariance in our sense means that the loop size d
bution follows Eq.~2! and that Eq.~5! is satisfied. Figure 18
shows that the assumption of scale invariance is consis
with our measurements for U~1! strings. However, the evi
dence forRP2 strings in Figs. 24 and 25 is against sca
invariance, except at the percolation transition. In both ca
the fractal dimension increases as the string density
creases: The string gets more crumpled. This is implicit
Vachaspati’s results@25#.

~iii ! Are the critical exponents of the string percolatio
transition universal? We have investigated several differ
representations of two vacuum manifolds U~1! andRP2, and
for these models at least we have found good evidence, s
marized in Table VIII, that the answer is ‘‘yes.’’ Furthe
more, the critical exponents are those of three-dimensio
site or bond percolation.

Our claims of universality are aided by the construction
a two-parameter generating function for the loop size dis
bution, which has some of the qualitites of a partition fun
tion ~but no thermal intepretation!. The existence of such
distribution implies that certain scaling relations charact
sitic of universality should be satisfied, as indeed they
~Table IX!.

Our results extend the work of Bradleyet al. @28# on tri-
chord percolation, who first noted the correspondence of
critical exponents with that of site percolation. With our v
riety of models of the manifolds, we provide evidence th
the correspondence is not confined to their three-color mo
n
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@equivalent to our three-point triangulation of U~1!#.
The simulations presented here model the initial con

tions of condensed-matter systems with a nonconserved
der parameter after a rapid quench. Dynamical simulati
have been performed on systems where the nonconse
order parameter is a complex scalar fieldf, both with
^f&50 ~corresponding to zero bias! and ^f&Þ0 @39#. It is
found that the introduction of a bias in the initial expectati
value of the order parameter results in the eventual depar
from dynamical scaling, with the density of the string ne
work going as

r~ t !;t21exp~2gt3/2!,

whereg depends approximately quadratically on the init
bias^f&. This is due to the network breaking up into isolat
loops, with an exponentially suppressed size distributi
When we published Ref.@6#, it was not clear whether this is
due to the initial conditions possessing no infinite string
whether the infinite string somehow manages to chop it
up into an infinite number of loops. If it had been the form
the percolation transition would have to happen at very sm
bias, perhaps even at^f&50, for the departure from power
law scaling inr(t) was observed from rather small biase
down to ^f&50.001. Having extended the work of Ref.@6#
to ~a! better statistics,~b! much larger upper cutoff lengths
~c! one more symmetry group, and~d! continuous represen
tations of the ground-state manifold, we have now asc
tained that this is not the case. The existence of infin
strings holds for a range of biased initial conditions.

By the example of string defects, this work has provid
some intuitive, as well as some quantitative understandin
how defects in systems with continuous symmetries are
fected by a lifting of the degeneracy of the possible grou
states. Since these effects also change the late-time dyna
of systems with nonconserved order parameter, the hop
that understanding the initial conditions carries us one s
further in understanding these dynamics. It should also p
vide some incentive to study other defects under similar c
ditions, in theory and in the laboratory.
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APPENDIX A: FAILURE OF THE DODECAHEDRAL
DISCRETIZATION OF RP2

Here we will prove that a discretization ofRP2 achieved
by using only those points that are the vertices of a dode
hedron~DH! embedded into the sphere does not force s
avoidance of the resulting string defects. Let us take the
per half of the dodecahedron, with its vertices numbe
according to Fig. 26.

Not all the point pairs are directly linked to each othe
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55 1145UNIVERSALITY AND CRITICAL PHENOMENA IN . . .
but all are at most two links apart. There are no ambigui
in applying the geodesic rule because no pairs can be
nected in more than one way, if we only allow connecti
lengths of up to two links. For any assignment of such
restricted selection of elements ofRP2 to the vertices of a
triangle, we can therefore identify uniquely whether the
angle is penetrated by a string or not. This is equivalen
the statement that we could use the same flux definition
before because none of the projections to the upper
sphere of vectors pointing to the vertices of the DH are
right angles to each other. This correspondence will m
the proof easier because we can just check whether a g
shortest path between two points crosses the equator
assign it a value of21 if it does or 1 otherwise. The produc
of all links will then indicate whether there is a string prese
in a triangle~if the product is negative! or not. Now let us
take, e.g., the assignments 2, 5, 8, and 9 for the respe
vacuum fields on the vertices of a tetrahedron. Then the li
have the following ‘‘equator-crossing indicators’’ assign
to them:

~25!→11,

~28!→11,

~29!→21,

~58!→21,

~59!→11,

~89!→11.

Since the two links that have21 assigned to them are dis
connected, all triangles border exactly one of the two lin
and all the link-variable products are negative. There
therefore four string segments entering the tetrahedron.j

APPENDIX B: RENORMALIZATION GROUPS

1. Vacuum field averaging

Let us group the eight points of the bcc lattice ce
spanned by the vectors (1,0,0), (0,1,0), and (1

2,
1
2,

1
2) such that

the most frequently occurring vacuum value will be the va

FIG. 26. Convention for the numbering of the vertices of t
dodecahedron in Appendix A. Points lying on the lower half sph
are drawn as dotted circles. The projections of the points 1–5 to
lower half sphere are not drawn, but all their links can be seen h
s
n-

a

-
o
as
lf
t
e
en
nd

t

ive
s

s
e

e

assigned to the supersite. In case of ambiguities, i.e., if
values occur three times each or four times each, we take
smaller value~for consistency, this means 0,1, 1,2, and
2,0 to preserve the periodicity of the circle!. Let us define
the respective probabilities for the vacuum field values a

p~0!5p, p~1!5p~2!5
12p

2
. ~B1!

The possible configurations yielding, for the supersite, a fi
value of zero, then have respective probabilities as listed
Table X.

This gives, for the probability of the renormalized supe
site to have a zero vacuum field,

p85P~p!5p818p7~12p!128p6~12p!2156p5~12p!3

1 525
8 p4~12p!41 35

2 p
3~12p!5

5 105
8 p8255p71 315

4 p62 63
2 p

52 175
8 p41 35

2 p
3.

~B2!

The polynomialP(p)2p is plotted in Fig. 27. The zeros o
this plot correspond to fixed points. Fixed points outside
range@0,1# have no interpretation in terms of probabilitie

e
e
e.

TABLE X. Configurations of the eight sites grouped together
a supersite, which yield a vacuum value of 0 for the supers
together with their respective probabilities, according to Eq.~17!. It
is assumed thataÞb and neither is equal to 0.

Field values Number of
~1permutations! permutations Probability

~0,0,0,0,0,0,0,0! 1 p8

~0,0,0,0,0,0,0,a! 832
p7S12p

2 D
~0,0,0,0,0,0,a,a! 2732

p6S12p

2 D2
~0,0,0,0,0,0,1,2! 56

p6S12p

2 D2
~0,0,0,0,0,a,a,a! 5632

p5S12p

2 D3
~0,0,0,0,0,a,a,b! 16832

p5S12p

2 D3
~0,0,0,0,1,1,1,1! 70

p4S12p

2 D4
~0,0,0,0,a,a,a,b! 28032

p4S12p

2 D4
~0,0,0,0,1,1,2,2! 420

p4S12p

2 D4
~0,0,0,1,1,1,2,2! 560

p3S12p

2 D5
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1146 55KARL STROBL AND MARK HINDMARSH
We see that the only physical fixed points are at 0,1
3, and 1.

They are all expected, as discussed in Sec. VIB. What is
discussed there is that the stability of the fixed points
determined by the sign ofdp8/dp5dP/dp at the fixed
points. As expected again, the fixed points 0 and 1 are
only stable ones, so that this renormalization proced
would get rid of all infinite strings for anypÞ 1

3, which is
clearly different from our measurements. A renormalizat
procedure that merely performs field averages is there
not sufficient to describe the Hagedorn transition in the
tial conditions~but it may perhaps describe the disappe
ance of infinite strings in the subsequent dynamical evo
tion, as observed in Ref.@39#!.

We stress that we have not been able to find any n
trivial fixed points for various generalizations of Eq.~18!. It
is straightforward to write down the renormalization polyn
mial for general groupings ofn sites to a supersite by gen
eralizing the criteria leading to valid entries in Table X.

p85P~n!~p!

5 (
l ,k50
n2 l>2k
n2k>2l

l ,k<n/2
n!

l !k! ~n2 l2k!!
pn2 l2kS 12p

2 D k1 l

3S 12
1

2
dn2k2 l ,l2

1

2
dn2k2 l ,k1

1

3
dn,3ld l ,kD ,

which does not seem to have any physical fixed points o
than the trivial ones found with the polynomial in Eq.~18!.
The Kroneckerd ’s just divide out factors of 2 or 3, depend
ing on whether the most frequent vacuum phases are m
than one, as, e.g., in the fourth to last and last row of Ta
X. We have tried the same approach for a minimally d
cretizedRP2 symmetry where it is in fact much easier
write down the renormalization polynomial for the bias, b
again all the fixed points are the trivial ones and the per
lation threshold cannot be located in this way. For comple
ness, the easily derivable renormalization polynomial,
p(0)5p(1)5p(2)5p/3 and p(3)5p(4)5p(5)5~12p!/
3 and if we group a numbern of sites to become a supersi
of the renormalized lattice, becomes

FIG. 27. Renormalization polynomialP(p)2p of Eq. ~18!.
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p85 (
k50

[n/2] F S nkD pn2k~12p!kG
2
1

2
d2[n/2],nS n

n/2D pn/2~12p!n/2.

The bracket@n/2# denotes the largest integer not larger th
n/2 such that the term containing the Kroneckerd corrects
for the double counting of symmetric terms ifn is even.
Again, the only physical fixed points for all of these polyn
mials ~with n.2) are the trivial ones atp50,12,1 and no
percolation threshold can be identified in this way.

2. Renormalizing the Vachaspati model with conserved flux

As the next obvious step, one could try a renormalizat
procedure that conserves string flux. Clearly, this is m
easily done forZ2 strings, where the string flux can only be
or 1 ~or better, ‘‘even’’ or ‘‘odd’’!: If the first homotopy
group of the vacuum manifold is, e.g.,Z, then the string flux
through multiply renormalized supersites can become a
trarily large~if it is to be conserved! such that in every renor
malization step the lattice definition of the string flux wou
have to change together with the probabilities of the relev
parameters. As seen in all the models forZ2 strings@i.e., the
Vachaspati model, our calculations forRP2, and the calcu-
lations of Kibble for SO~3! strings @30##, this is essentially
done by identifying lattice links as having one of the tw
values61 assigned to them and taking the product ove
closed contour. The obvious approach is therefore to ass
ate two consecutive links with a superlink and assigning t
the product of the two link values. On any lattice~cubic or
tetrahedral!, this preserves the string flux in the sense that
string flux through a superplaquette is zero~even! if the sum
of the string lines penetrating the constituent plaquette
even and odd~one! otherwise. The procedure is outlined
Fig. 28.

The third dimension does not have to be drawn since
renormalization procedures for differently oriented links a
independent from each other~the second dimension is nec
essary only to show how changes in the string flux surv
the renormalization procedure!. Let us define the probability
of finding a link with value 11 by p15p such that
p2512p. Naively, one expects that, as the size of the
perplaquettes increases with every renormalization step,
string flux for very large plaquettes is 0 or 1 with equ

FIG. 28. Renormalization procedure for a grouping such that
coarse-grained lattice spacing is twice the spacing on the orig
lattice. The assignments to the links inside the finer lattice is ir
evant to the total string flux. Changing any of the outer links of t
fine lattice changes the string flux and changes one of the link
the coarse-grained lattice, changing the string flux also in the re
malized description.
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FIG. 29. Renormalization polynomial for orders 2–7. There is a clear tendency for the potential to flatten out nearp5
1
2, making the

speed of convergence towards the stable fixed pointp5
1
2 faster for largerN. There is no tendency for the emergence of any fixed po

other than 0~for odd polynomials only!, 1
2, and 1. The dotted line is the linep5p. The intersections define the fixed points.
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probability, irrespective of the initial bias, as long as t
average number of expected~nonrenormalized! 21 links on
the edge of the superplaquette is much greater than 1, i.e
any nontrivial bias. The probabilities to have21 or 11
assigned to a link converge towardsp25p15 1

2, i.e., p15
1
2, should be a stable fixed point. This is exactly what h
pens.p8 consists of two contributions: both links of the no
renormalized lattice have to have the same value assigne
them in order to make the superlink carry the value11.
Therefore

p85p21~12p!2.

It is easy to see that the only fixed points are1
2 and 1: If the
for

-

to

entire nonrenormalized lattice consists of links with21 ~i.e.,
p50), the renormalized lattice will consist entirely of link
with 11 such thatp50 is not a fixed point. Furthermore
dp8/dp54p22 such thatp51 is an unstable fixed point
p5 1

2 is a stable fixed point and is approached exponenti
fast for any sequence of renormalization steps. This fast
proach is also understandable: As soon as the probabilit
having a value of21 on any of the original links spanned b
a superlink becomes appreciable, the probabilities of hav
either11 or 21 assigned to the superlink are very nea
equal. The probability of encountering a21 link approaches
1 exponentially with the sizel of the superlink as 12pl .

This procedure cannot be refined by combining more th
two links to a superlink in the next step since the argume
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leading to the stable fixed pointp5 1
2 stay valid for any such

renormalization. This has been tested up to coarse grain
by factors of 7. The renormalization polynomial in any
these coarse-graining procedures is~if the lattice is coarse
grained by a factor ofN)

p85PN~p!5 (
k50

k<N/2 S N

Nmod 212kD pN22k~12p!2k,

for which it is trivially true thatp51 is a fixed point. Using

11S n2D 1S n4D 1•••52n21,

S n1D 1S n3D 1S n5D 1•••52n21,

it is easy to see thatp5 1
2 is also a fixed point for all of these

renormalization procedures. Also, for odd numbers ofN,
p50 is a fixed point, as one expects~an odd number of
21 links gets renormalized to a21 superlink!. We have
testedPN(p) for values up toN57, and the mentioned fixed
points are really the only solutions ofPN(p)5p for all of
these. Furthermore, the speed of divergence ofPN(p) out-
side the interval@0,1# tends to increase, so that it seems th
the physical fixed points are in fact the only real ones and
other solutions toPN(p)5p are complex numbers. Surely
should be possible to find a rigorous proof for this stateme
from the general form ofPN(p), but instead we refer to Fig
29, which seems to suggest very strongly a tendency for
PN(p) not to develop any other physical fixed points as
increaseN.

What this means is that the renormalization proced
proposed here is also inappropriate for telling us about
scaling of the string network, as all it tells us is that throu
very large surfaces~on superhorizon scales!, the probability
of finding a Z2-string flux 1 is 1

2. In particular, it does not
enable us to locate a string percolation threshold. Summa
ing both sections of this appendix, the question of how
formulate a renormalization-group transformation that id
tifies the Hagedorn transition point as a fixed point rema
unanswered, as does the question of which variables
should preserve in such a transformation.

APPENDIX C: COMPARISON
TO THERMAL QUANTITIES

In Ref. @6# we attempted to extract a statistical tempe
ture definition from the probability distribution of strings
This can of course be done only by analogy to statistic
mechanics arguments. It will turn out that the temperat
thus obtained is meaningless in physical terms and we ar
at a circular argument, giving us thatc should be interpreted
as an inverse temperature, which is not the case, as w
gued before. Thus comparisons with thermal ensemble
thermal partition functions are not appropriate.
gs
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If we define a probability density that a given string se
ment belongs to a loop in the length interval@ l ,l1dl# by
P( l )}( l dn/dl), we can define an information entropy, co
tained in the probability distribution function by

S52(
l
P~ l !lnP~ l !.

We can, for instance, try to relate the average length of st
loops to an average energy of a thermal ensemble. It wo
then make sense to define a temperatureu as

1

u
5

]S

]^ l &

and see how the system behaves under changes of the
In Ref. @6# we did not have good enough statistics to extr
that parameter, but with the partition function we do not ne
to get involved with the numerically highly unstable divisio
of two differentials because, without normalization,

P~ l !5 l2t11e2cl.

The entropy can then be split into two parts

S52(
l
l2t11e2cl@~2t11!lnl2cl#5S11S2.

Then

S2}c^ l loop&}c
t22.

S1, by partial integration, behaves as

S1}E ln~ l !l2t11e2cldl}ct22@const12const2lnc#.

Thus, with

dS}~Dh!~t222s!/s@11const lnh#d~Dh!

and

d^ l loop&}~Dh!~t232s!/sd~Dh!,

we obtain

u}~Dh!21/s@11const lnh#

and the thus obtained temperature diverges, up to logarith
corrections, as 1/c and the Hagedorn transition happens
infinite u. Thus the correspondence of our partition functi
with a thermal one does not hold. j
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